1,552 research outputs found

    Asymptotic solutions of forced nonlinear second order differential equations and their extensions

    Full text link
    Using a modified version of Schauder's fixed point theorem, measures of non-compactness and classical techniques, we provide new general results on the asymptotic behavior and the non-oscillation of second order scalar nonlinear differential equations on a half-axis. In addition, we extend the methods and present new similar results for integral equations and Volterra-Stieltjes integral equations, a framework whose benefits include the unification of second order difference and differential equations. In so doing, we enlarge the class of nonlinearities and in some cases remove the distinction between superlinear, sublinear, and linear differential equations that is normally found in the literature. An update of papers, past and present, in the theory of Volterra-Stieltjes integral equations is also presented

    On Nonoscillation of Mixed Advanced-Delay Differential Equations with Positive and Negative Coefficients

    Get PDF
    For a mixed (advanced--delay) differential equation with variable delays and coefficients x˙(t)±a(t)x(g(t))∓b(t)x(h(t))=0,t≥t0 \dot{x}(t) \pm a(t)x(g(t)) \mp b(t)x(h(t)) = 0, t\geq t_0 where a(t)≥0,b(t)≥0,g(t)≤t,h(t)≥t a(t)\geq 0, b(t)\geq 0, g(t)\leq t, h(t)\geq t explicit nonoscillation conditions are obtained.Comment: 17 pages; 2 figures; to appear in Computers & Mathematics with Application

    Kamenev type oscillation criteria for nonlinear difference equations

    Get PDF
    summary:By means of Riccati transformation techniques, we establish some new oscillation criteria for second-order nonlinear difference equation which are sharp

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure
    • …
    corecore