1,496 research outputs found

    Converse Lyapunov Theorems for Switched Systems in Banach and Hilbert Spaces

    Get PDF
    We consider switched systems on Banach and Hilbert spaces governed by strongly continuous one-parameter semigroups of linear evolution operators. We provide necessary and sufficient conditions for their global exponential stability, uniform with respect to the switching signal, in terms of the existence of a Lyapunov function common to all modes

    Stability of stochastic impulsive differential equations: integrating the cyber and the physical of stochastic systems

    Full text link
    According to Newton's second law of motion, we humans describe a dynamical system with a differential equation, which is naturally discretized into a difference equation whenever a computer is used. The differential equation is the physical model in human brains and the difference equation the cyber model in computers for the dynamical system. The physical model refers to the dynamical system itself (particularly, a human-designed system) in the physical world and the cyber model symbolises it in the cyber counterpart. This paper formulates a hybrid model with impulsive differential equations for the dynamical system, which integrates its physical model in real world/human brains and its cyber counterpart in computers. The presented results establish a theoretic foundation for the scientific study of control and communication in the animal/human and the machine (Norbert Wiener) in the era of rise of the machines as well as a systems science for cyber-physical systems (CPS)

    Relaxed ISS Small-Gain Theorems for Discrete-Time Systems

    Full text link
    In this paper ISS small-gain theorems for discrete-time systems are stated, which do not require input-to-state stability (ISS) of each subsystem. This approach weakens conservatism in ISS small-gain theory, and for the class of exponentially ISS systems we are able to prove that the proposed relaxed small-gain theorems are non-conservative in a sense to be made precise. The proofs of the small-gain theorems rely on the construction of a dissipative finite-step ISS Lyapunov function which is introduced in this work. Furthermore, dissipative finite-step ISS Lyapunov functions, as relaxations of ISS Lyapunov functions, are shown to be sufficient and necessary to conclude ISS of the overall system.Comment: input-to-state stability, Lyapunov methods, small-gain conditions, discrete-time non-linear systems, large-scale interconnection

    Rate of Converrgence for ergodic continuous Markov processes : Lyapunov versus Poincare

    Get PDF
    We study the relationship between two classical approaches for quantitative ergodic properties : the first one based on Lyapunov type controls and popularized by Meyn and Tweedie, the second one based on functional inequalities (of Poincar\'e type). We show that they can be linked through new inequalities (Lyapunov-Poincar\'e inequalities). Explicit examples for diffusion processes are studied, improving some results in the literature. The example of the kinetic Fokker-Planck equation recently studied by H\'erau-Nier, Helffer-Nier and Villani is in particular discussed in the final section
    • …
    corecore