1,382 research outputs found

    Identification of Matrices Having a Sparse Representation

    Get PDF
    We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). Of particular interest is the dictionary of time-frequency shift matrices and its role for channel estimation and identification in communications engineering. We present recovery results for BP with the time-frequency shift dictionary and various dictionaries of random matrices

    Greed is good: algorithmic results for sparse approximation

    Get PDF
    This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho's basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasi-incoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasi-incoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms

    Recovery of Sparse Signals Using Multiple Orthogonal Least Squares

    Full text link
    We study the problem of recovering sparse signals from compressed linear measurements. This problem, often referred to as sparse recovery or sparse reconstruction, has generated a great deal of interest in recent years. To recover the sparse signals, we propose a new method called multiple orthogonal least squares (MOLS), which extends the well-known orthogonal least squares (OLS) algorithm by allowing multiple LL indices to be chosen per iteration. Owing to inclusion of multiple support indices in each selection, the MOLS algorithm converges in much fewer iterations and improves the computational efficiency over the conventional OLS algorithm. Theoretical analysis shows that MOLS (L>1L > 1) performs exact recovery of all KK-sparse signals within KK iterations if the measurement matrix satisfies the restricted isometry property (RIP) with isometry constant δLK<LK+2L.\delta_{LK} < \frac{\sqrt{L}}{\sqrt{K} + 2 \sqrt{L}}. The recovery performance of MOLS in the noisy scenario is also studied. It is shown that stable recovery of sparse signals can be achieved with the MOLS algorithm when the signal-to-noise ratio (SNR) scales linearly with the sparsity level of input signals

    Compressed Sensing and Redundant Dictionaries

    Get PDF
    This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry constants. Thus, signals that are sparse with respect to the dictionary can be recovered via Basis Pursuit from a small number of random measurements. Further, thresholding is investigated as recovery algorithm for compressed sensing and conditions are provided that guarantee reconstruction with high probability. The different schemes are compared by numerical experiments.Comment: error in a constant correcte
    corecore