432 research outputs found

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Novel Lagrange sense exponential stability criteria for time-delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters: A graph-theoretic approach

    Get PDF
    This paper concerns the issues of exponential stability in Lagrange sense for a class of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with mixed time delays and Markovian jumping is provided by applying the association of Lyapunov method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some examples with numerical simulations are given to demonstrate the effectiveness of the acquired result

    Exponential Lag Synchronization of Cohen-Grossberg Neural Networks with Discrete and Distributed Delays on Time Scales

    Full text link
    In this article, we investigate exponential lag synchronization results for the Cohen-Grossberg neural networks (C-GNNs) with discrete and distributed delays on an arbitrary time domain by applying feedback control. We formulate the problem by using the time scales theory so that the results can be applied to any uniform or non-uniform time domains. Also, we provide a comparison of results that shows that obtained results are unified and generalize the existing results. Mainly, we use the unified matrix-measure theory and Halanay inequality to establish these results. In the last section, we provide two simulated examples for different time domains to show the effectiveness and generality of the obtained analytical results.Comment: 20 pages, 18 figure

    New Stability Criterion for Takagi-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Probabilistic Time-Varying Delays

    Get PDF
    A new global asymptotic stability criterion of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with probabilistic time-varying delays was derived, in which the diffusion item can play its role. Owing to deleting the boundedness conditions on amplification functions, the main result is a novelty to some extent. Besides, there is another novelty in methods, for Lyapunov-Krasovskii functional is the positive definite form of p powers, which is different from those of existing literature. Moreover, a numerical example illustrates the effectiveness of the proposed methods

    General criteria for asymptotic and exponential stabilities of neural network models with unbounded delays

    Get PDF
    For a family of differential equations with infinite delay, we give sufficient conditions for the global asymptotic, and global exponential stability of an equilibrium point. This family includes most of the delayed models of neural networks of Cohen-Grossberg type, with both bounded and unbounded distributed delay, for which general asymptotic and exponential stability criteria are derived. As illustrations, the results are applied to several concrete models studied in the literature, and a comparison of results is given.Fundação para a Ciência e a Tecnologia (FCT) - 2009-ISFL-1-209Universidade do Minho. Centro de Matemática (CMAT

    Finite-time stabilization of discontinuous fuzzy inertial Cohen–Grossberg neural networks with mixed time-varying delays

    Get PDF
    This article aims to study a class of discontinuous fuzzy inertial Cohen–Grossberg neural networks (DFICGNNs) with discrete and distributed time-delays. First of all, in order to deal with the discontinuities by the differential inclusion theory, based on a generalized variable transformation including two tunable variables, the mixed time-varying delayed DFICGNN is transformed into a first-order differential system. Then, by constructing a modified Lyapunov–Krasovskii functional concerning with the mixed time-varying delays and designing a delayed feedback control law, delay-dependent criteria formulated by algebraic inequalities are derived for guaranteeing the finite-time stabilization (FTS) for the addressed system. Moreover, the settling time is estimated. Some related stability results on inertial neural networks is extended. Finally, two numerical examples are carried out to verify the effectiveness of the established results

    Anti-periodic solution for fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays

    Get PDF
    In this paper, by using a continuation theorem of coincidence degree theory and a differential inequality, we establish some sufficient conditions ensuring the existence and global exponential stability of anti-periodic solutions for a class of fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays. In addition, we present an illustrative example to show the feasibility of obtained results
    • …
    corecore