109,728 research outputs found

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities

    Product Focused Freeform Fabrication Education

    Get PDF
    Presented in this paper is our experience of teaching freeform fabrication to students at the Missouri University of Science and Technology, and to high school students and teachers. The emphasis of the curriculum is exposing students to rapid product development technologies with the goal of creating awareness to emerging career opportunities in CAD/CAM. Starting from solid modeling, principles of freeform fabrication, to applications of rapid prototyping and manufacturing in industry sponsored product development projects, students can learn in-depth freeform fabrication technologies. Interactive course content with hands-on experience for product development is the key towards the success of the program.Mechanical Engineerin

    Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach

    Get PDF
    Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems

    A virtual environment for the design and simulated construction of prefabricated buildings

    Get PDF
    The construction industry has acknowledged that its current working practices are in need of substantial improvements in quality and efficiency and has identified that computer modelling techniques and the use of prefabricated components can help reduce times, costs, and minimise defects and problems of on-site construction. This paper describes a virtual environment to support the design and construction processes of buildings from prefabricated components and the simulation of their construction sequence according to a project schedule. The design environment can import a library of 3-D models of prefabricated modules that can be used to interactively design a building. Using Microsoft Project, the construction schedule of the designed building can be altered, with this information feeding back to the construction simulation environment. Within this environment the order of construction can be visualised using virtual machines. Novel aspects of the system are that it provides a single 3-D environment where the user can construct their design with minimal user interaction through automatic constraint recognition and view the real-time simulation of the construction process within the environment. This takes this area of research a step forward from other systems that only allow the planner to view the construction at certain stages, and do not provide an animated view of the construction process

    Applying Design for Assembly Principles in Computer Aided Design to Make Small Changes that Improve the Efficiency of Manual Aircraft Systems Installations

    Get PDF
    The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced.To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time.This paper describes a recent study that applied design for assembly and maintainability principles and CATIA v5 computer aided design software to identify small design changes for wing systems installation tasks. Results show positive impacts for ergonomics, production time and cost, and maintainability, whilst accounting for aircraft performance and machining capabilities
    • 

    corecore