3,083 research outputs found

    Design of frequency invariant beamformer for broadband arrays

    Get PDF
    A simple method for the design of a class of arrays with frequency invariant beam patterns is proposed. Starting from the desired frequency invariant beam pattern of an n-D array, the proposed method uses a series of substitutions and an n-D inverse Fourier transform to obtain the desired frequency responses of the filters following each sensor. Given their desired frequency responses, these filters can be realized by either an analogue filter or a digital filter. Hence the proposed method can cover the design of broadband arrays with either analogue signals or discrete signals. Two design examples are provided, with one for a linear array and one for a planar array

    Frequency Invariant Beamforming in Subbands

    No full text
    In this paper, two subband implementations of a frequency invariant beamformer (FIB) are studied. In the first structure, the received array signals are split into subbands and an FIB is operated in each of the corresponding decimated subbands, with a potential of achieving a lower computational complexity. As the spatio-temporal distributionof the subband signals is different from the original fullband signal, a modified design method of the FIB is proposed. Based on the subband implementation, we then change the sensor spacings of different subband signals so that lower frequency bands have a larger spacing, which results in a class of FIBs with scaled aperture with improved performance in lower frequencies. Several design examples are given to show the performance of our new structures

    MIMO radar with broadband waveforms: Smearing filter banks and 2D virtual arrays

    Get PDF
    In this paper MIMO radars with broadband waveforms are considered. A time domain viewpoint is taken, which allows frequency invariant beamforming with a filter bank called the smearing filter bank. Motivated by recent work on two dimensional arrays to obtain frequency invariant one dimensional beams, the generation of two dimensional virtual arrays from one dimensional ULAs is also considered. It is also argued that when the smearing filter bank is appropriately used, frequency invariant 2D beams can be generated

    Frequency invariant beamforming for two-dimensional and three-dimensional arrays

    Get PDF
    A novel method for the design of two-dimensional (2-D) and three-dimensional (3-D)arrays with frequency invariant beam patterns is proposed. By suitable substitu- tions, the beam pattern of a 2-D or 3-D arrays can be regarded as the 3-D or 4-D Fourier transform of its spatial and temporal parameters. Since frequency invariance can be easily imposed in the Fourier domain, a simple design method is derived. Design examples for the 2-D case are provided

    Off-broadside main beam design for frequency invariant beamformers

    Get PDF
    In a previously proposed design method for frequency invariant beamforming, the design for the case of an off-broadside main beam is not satisfactory. After a detailed analysis, we propose two methods to overcome this problem: one is to increase the length of the FIR filter attached to each sensor, as a result, we need to sample the transformed desired response more densely in the associated direction; the other one is to design a broadside main beam first, then it is convolved with appropriate steering delay filters. Design examples show that the two methods can provide satisfactory results

    Generalized Broadband Beamforming Using a Modal Subspace Decomposition

    No full text
    We propose a new broadband beamformer design technique which produces an optimal receiver beam pattern for any set of field measurements in space and time. The modal subspace decomposition (MSD) technique is based on projecting a desired pattern into the subspace of patterns achievable by a particular set of space-time sampling positions. This projection is the optimal achievable pattern in the sense that it minimizes the mean-squared error (MSE) between the desired and actual patterns. The main advantage of the technique is versatility as it can be applied to both sparse and dense arrays, nonuniform and asynchronous time sampling, and dynamic arrays where sensors can move throughout space. It can also be applied to any beam pattern type, including frequency-invariant and spot pattern designs. A simple extension to the technique is presented for oversampled arrays, which allows high-resolution beamforming whilst carefully controlling input energy and error sensitivity

    Adaptive beamforming using frequency invariant uniform concentric circular arrays

    Get PDF
    This paper proposes new adaptive beamforming algorithms for a class of uniform concentric circular arrays (UCCAs) having near-frequency invariant characteristics. The basic principle of the UCCA frequency invariant beamformer (FIB) is to transform the received signals to the phase mode representation and remove the frequency dependence of individual phase modes through the use of a digital beamforming or compensation network. As a result, the far field pattern of the array is electronic steerable and is approximately invariant over a wider range of frequencies than the uniform circular arrays (UCAs). The beampattern is governed by a small set of variable beamformer weights. Based on the minimum variance distortionless response (MVDR) and generalized sidelobe canceller (GSC) methods, new recursive adaptive beamforming algorithms for UCCA-FIB are proposed. In addition, robust versions of these adaptive beamforming algorithms for mitigating direction-of-arrival (DOA) and sensor position errors are developed. Simulation results show that the proposed adaptive UCCA-FIBs converge much faster and reach a considerable lower steady-state error than conventional broadband UCCA beamformers without using the compensation network. Since fewer variable multipliers are required in the proposed algorithms, it also leads to lower arithmetic complexity and faster tracking performance than conventional methods. © 2007 IEEE.published_or_final_versio

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure
    corecore