232 research outputs found

    New candidates for multivariate trapdoor functions

    Get PDF
    We present a new method for building pairs of HFE polynomials of high degree, such that the map constructed with such a pair is easy to invert. The inversion is accomplished using a low degree polynomial of Hamming weight three, which is derived from a special reduction via Hamming weight three polynomials produced by these two HFE polynomials. This allows us to build new candidates for multivariate trapdoor functions in which we use the pair of HFE polynomials to fabricate the core map. We performed the security analysis for the case where the base field is GF(2)GF(2) and showed that these new trapdoor functions have high degrees of regularity, and therefore they are secure against the direct algebraic attack. We also give theoretical arguments to show that these new trapdoor functions over GF(2)GF(2) are secure against the MinRank attack as well

    Nuevas candidatas para funciones trampa multivariadas

    Get PDF
    Presentamos un nuevo método de reducción que permite construirparejas de polinomios HFE de grado alto, tal que la función construida concada una de estas parejas de polinomios es fácil de invertir. Para invertir lapareja de polinomios usamos un polinomio de grado bajo y de peso de Ham-ming tres, el cual es derivado mediante un método especial de reducción queinvolucra polinomios de peso de Hamming tres producidos a partir de los dospolinomios HFE. Esto nos permite construir nuevas candidatas para funcionestrampa multivariadas usando la pareja de polinomios HFE para construir lafunción central. Realizamos un análisis de seguridad cuando el campo base esGF(2) y mostramos que estas nuevas funciones trampa multivariadas tienen grado de regularidad alto, y por lo tanto resisten el ataque algebraico. Ademásdamos argumentos teóricos para mostrar que estas nuevas funciones trampasobre GF(2) tambien resisten el ataque MinRank.We present a new method for building pairs of HFE polynomialsof high degree, such that the map constructed with one of these pairs is easyto invert. The inversion is accomplished using a low degree polynomial ofHamming weight three, which is derived from a special reduction via Hammingweight three polynomials produced by these two HFE polynomials. This allowsus to build new candidates for multivariate trapdoor functions in which weuse the pair of HFE polynomials to fabricate the core map. We performed thesecurity analysis for the case where the base eld is GF(2) and showed thatthese new trapdoor functions have high degrees of regularity, and thereforethey are secure against the direct algebraic attack. We also give theoreticalarguments to show that these new trapdoor functions over GF(2) are secureagainst the MinRank attack as well

    On the security of multivariate encryption schemes

    Get PDF
    A criptografia moderna está em perigo por causa dos computadores quânticos, mesmo que, limitados por hardware, já existem algoritmos que podem quebrar os esquemas de chave pública mais utilizados para tráfego de informação. Criptografia multivariável é um bom candidato para criação de esquemas criptográficos seguros até para computadores quânticos, pois são baseadas em um problema NP-Difícil. Nesse trabalho, nós explicamos ataques comuns a criptossistemas multivariáveis além de estudarmos a teoria e implementação deles

    Multilinear Maps in Cryptography

    Get PDF
    Multilineare Abbildungen spielen in der modernen Kryptographie eine immer bedeutendere Rolle. In dieser Arbeit wird auf die Konstruktion, Anwendung und Verbesserung von multilinearen Abbildungen eingegangen

    A method of Weil sum in multivariate quadratic cryptosystem

    Get PDF
    A new cryptanalytic application is proposed for a number theoretic tool Weil sum to the birthday attack against multivariate quadratic trapdoor function. This new customization of the birthday attack is developed by evaluating the explicit Weil sum of the underlying univariate polynomial and the exact number of solutions of the associated bivariate equation. I designed and implemented new algorithms for computing Weil sum values so that I could explicitly identify some class of weak Dembowski- Ostrom polynomials and the equivalent forms in the multivariate quadratic trapdoor function. This customized attack, also regarded as an equation solving algorithm for the system of some special quadratic equations over finite fields, is fundamentally different from the Grobner basis methods. The theoretical observations and experiments show that the required computational complexity of the attack on these weak polynomial instances can be asymptotically less than the square root complexity of the common birthday attack by a factor as large as 2^(n/8) in terms of the extension degree n of F2n. I also suggest a few open problems that any MQ-based short signature scheme must explicitly take into account for the basic design principles

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    Solving multivariate polynomial systems and an invariant from commutative algebra

    Get PDF
    The complexity of computing the solutions of a system of multivariate polynomial equations by means of Gr\"obner bases computations is upper bounded by a function of the solving degree. In this paper, we discuss how to rigorously estimate the solving degree of a system, focusing on systems arising within public-key cryptography. In particular, we show that it is upper bounded by, and often equal to, the Castelnuovo Mumford regularity of the ideal generated by the homogenization of the equations of the system, or by the equations themselves in case they are homogeneous. We discuss the underlying commutative algebra and clarify under which assumptions the commonly used results hold. In particular, we discuss the assumption of being in generic coordinates (often required for bounds obtained following this type of approach) and prove that systems that contain the field equations or their fake Weil descent are in generic coordinates. We also compare the notion of solving degree with that of degree of regularity, which is commonly used in the literature. We complement the paper with some examples of bounds obtained following the strategy that we describe
    corecore