7,635 research outputs found

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual \ell1 linearly constrained Lagrangian (pd\ell1-LCL) method

    An interior point algorithm for minimum sum-of-squares clustering

    Get PDF
    Copyright @ 2000 SIAM PublicationsAn exact algorithm is proposed for minimum sum-of-squares nonhierarchical clustering, i.e., for partitioning a given set of points from a Euclidean m-space into a given number of clusters in order to minimize the sum of squared distances from all points to the centroid of the cluster to which they belong. This problem is expressed as a constrained hyperbolic program in 0-1 variables. The resolution method combines an interior point algorithm, i.e., a weighted analytic center column generation method, with branch-and-bound. The auxiliary problem of determining the entering column (i.e., the oracle) is an unconstrained hyperbolic program in 0-1 variables with a quadratic numerator and linear denominator. It is solved through a sequence of unconstrained quadratic programs in 0-1 variables. To accelerate resolution, variable neighborhood search heuristics are used both to get a good initial solution and to solve quickly the auxiliary problem as long as global optimality is not reached. Estimated bounds for the dual variables are deduced from the heuristic solution and used in the resolution process as a trust region. Proved minimum sum-of-squares partitions are determined for the rst time for several fairly large data sets from the literature, including Fisher's 150 iris.This research was supported by the Fonds National de la Recherche Scientifique Suisse, NSERC-Canada, and FCAR-Quebec
    corecore