4,342 research outputs found

    Partial Strong Converse for the Non-Degraded Wiretap Channel

    Full text link
    We prove the partial strong converse property for the discrete memoryless \emph{non-degraded} wiretap channel, for which we require the leakage to the eavesdropper to vanish but allow an asymptotic error probability ϵ∈[0,1)\epsilon \in [0,1) to the legitimate receiver. We show that when the transmission rate is above the secrecy capacity, the probability of correct decoding at the legitimate receiver decays to zero exponentially. Therefore, the maximum transmission rate is the same for ϵ∈[0,1)\epsilon \in [0,1), and the partial strong converse property holds. Our work is inspired by a recently developed technique based on information spectrum method and Chernoff-Cramer bound for evaluating the exponent of the probability of correct decoding

    Distributed Structure: Joint Expurgation for the Multiple-Access Channel

    Full text link
    In this work we show how an improved lower bound to the error exponent of the memoryless multiple-access (MAC) channel is attained via the use of linear codes, thus demonstrating that structure can be beneficial even in cases where there is no capacity gain. We show that if the MAC channel is modulo-additive, then any error probability, and hence any error exponent, achievable by a linear code for the corresponding single-user channel, is also achievable for the MAC channel. Specifically, for an alphabet of prime cardinality, where linear codes achieve the best known exponents in the single-user setting and the optimal exponent above the critical rate, this performance carries over to the MAC setting. At least at low rates, where expurgation is needed, our approach strictly improves performance over previous results, where expurgation was used at most for one of the users. Even when the MAC channel is not additive, it may be transformed into such a channel. While the transformation is lossy, we show that the distributed structure gain in some "nearly additive" cases outweighs the loss, and thus the error exponent can improve upon the best known error exponent for these cases as well. Finally we apply a similar approach to the Gaussian MAC channel. We obtain an improvement over the best known achievable exponent, given by Gallager, for certain rate pairs, using lattice codes which satisfy a nesting condition.Comment: Submitted to the IEEE Trans. Info. Theor

    Controlled Sensing for Multihypothesis Testing

    Full text link
    The problem of multiple hypothesis testing with observation control is considered in both fixed sample size and sequential settings. In the fixed sample size setting, for binary hypothesis testing, the optimal exponent for the maximal error probability corresponds to the maximum Chernoff information over the choice of controls, and a pure stationary open-loop control policy is asymptotically optimal within the larger class of all causal control policies. For multihypothesis testing in the fixed sample size setting, lower and upper bounds on the optimal error exponent are derived. It is also shown through an example with three hypotheses that the optimal causal control policy can be strictly better than the optimal open-loop control policy. In the sequential setting, a test based on earlier work by Chernoff for binary hypothesis testing, is shown to be first-order asymptotically optimal for multihypothesis testing in a strong sense, using the notion of decision making risk in place of the overall probability of error. Another test is also designed to meet hard risk constrains while retaining asymptotic optimality. The role of past information and randomization in designing optimal control policies is discussed.Comment: To appear in the Transactions on Automatic Contro

    Applications of position-based coding to classical communication over quantum channels

    Get PDF
    Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.Comment: v4: 44 pages, v4 includes a simpler proof for an upper bound on one-shot entanglement-assisted capacity, also found recently and independently in arXiv:1804.0964
    • …
    corecore