19,723 research outputs found

    Integer linear programming techniques for constant dimension codes and related structures

    Get PDF
    The lattice of subspaces of a finite dimensional vector space over a finite field is combined with the so-called subspace distance or the injection distance a metric space. A subset of this metric space is called subspace code. If a subspace code contains solely elements, so-called codewords, with equal dimension, it is called constant dimension code, which is abbreviated as CDC. The minimum distance is the smallest pairwise distance of elements of a subspace code. In the case of a CDC, the minimum distance is equivalent to an upper bound on the dimension of the pairwise intersection of any two codewords. Subspace codes play a vital role in the context of random linear network coding, in which data is transmitted from a sender to multiple receivers such that participants of the communication forward random linear combinations of the data. The two main problems of subspace coding are the determination of the cardinality of largest subspace codes and the classification of subspace codes. Using integer linear programming techniques and symmetry, this thesis answers partially the questions above while focusing on CDCs. With the coset construction and the improved linkage construction, we state two general constructions, which improve on the best known lower bound of the cardinality in many cases. A well-structured CDC which is often used as building block for elaborate CDCs is the lifted maximum rank distance code, abbreviated as LMRD. We generalize known upper bounds for CDCs which contain an LMRD, the so-called LMRD bounds. This also provides a new method to extend an LMRD with additional codewords. This technique yields in sporadic cases best lower bounds on the cardinalities of largest CDCs. The improved linkage construction is used to construct an infinite series of CDCs whose cardinalities exceed the LMRD bound. Another construction which contains an LMRD together with an asymptotic analysis in this thesis restricts the ratio between best known lower bound and best known upper bound to at least 61.6% for all parameters. Furthermore, we compare known upper bounds and show new relations between them. This thesis describes also a computer-aided classification of largest binary CDCs in dimension eight, codeword dimension four, and minimum distance six. This is, for non-trivial parameters which in addition do not parametrize the special case of partial spreads, the third set of parameters of which the maximum cardinality is determined and the second set of parameters with a classification of all maximum codes. Provable, some symmetry groups cannot be automorphism groups of large CDCs. Additionally, we provide an algorithm which examines the set of all subgroups of a finite group for a given, with restrictions selectable, property. In the context of CDCs, this algorithm provides on the one hand a list of subgroups, which are eligible for automorphism groups of large codes and on the other hand codes having many symmetries which are found by this method can be enlarged in a postprocessing step. This yields a new largest code in the smallest open case, namely the situation of the binary analogue of the Fano plane

    Results on Binary Linear Codes With Minimum Distance 8 and 10

    Full text link
    All codes with minimum distance 8 and codimension up to 14 and all codes with minimum distance 10 and codimension up to 18 are classified. Nonexistence of codes with parameters [33,18,8] and [33,14,10] is proved. This leads to 8 new exact bounds for binary linear codes. Primarily two algorithms considering the dual codes are used, namely extension of dual codes with a proper coordinate, and a fast algorithm for finding a maximum clique in a graph, which is modified to find a maximum set of vectors with the right dependency structure.Comment: Submitted to the IEEE Transactions on Information Theory, May 2010 To be presented at the ACCT 201

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Subspace subcodes of Reed-Solomon codes

    Get PDF
    We introduce a class of nonlinear cyclic error-correcting codes, which we call subspace subcodes of Reed-Solomon (SSRS) codes. An SSRS code is a subset of a parent Reed-Solomon (RS) code consisting of the RS codewords whose components all lie in a fixed ν-dimensional vector subspace S of GF (2m). SSRS codes are constructed using properties of the Galois field GF(2m). They are not linear over the field GF(2ν), which does not come into play, but rather are Abelian group codes over S. However, they are linear over GF(2), and the symbol-wise cyclic shift of any codeword is also a codeword. Our main result is an explicit but complicated formula for the dimension of an SSRS code. It implies a simple lower bound, which gives the true value of the dimension for most, though not all, subspaces. We also prove several important duality properties. We present some numerical examples, which show, among other things, that (1) SSRS codes can have a higher dimension than comparable subfield subcodes of RS codes, so that even if GF(2ν) is a subfield of GF(2m), it may not be the best ν-dimensional subspace for constructing SSRS codes; and (2) many high-rate SSRS codes have a larger dimension than any previously known code with the same values of n, d, and q, including algebraic-geometry codes. These examples suggest that high-rate SSRS codes are promising candidates to replace Reed-Solomon codes in high-performance transmission and storage systems

    Rigidity of spherical codes

    Full text link
    A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter-Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter-Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes-Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.Comment: 39 pages, 8 figure

    Trellis phase codes for power-bandwith efficient satellite communications

    Get PDF
    Support work on improved power and spectrum utilization on digital satellite channels was performed. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses: analytical bounds on error probability for multi-h phase codes, power and bandwidth characterization of 4-ary multi-h codes, and initial results of channel simulation to assess the impact of band limiting filters and nonlinear amplifiers on CPM performance
    • …
    corecore