12,859 research outputs found

    Singleton-Optimal LRCs and Perfect LRCs via Cyclic and Constacyclic Codes

    Full text link
    Locally repairable codes (LRCs) have emerged as an important coding scheme in distributed storage systems (DSSs) with relatively low repair cost by accessing fewer non-failure nodes. Theoretical bounds and optimal constructions of LRCs have been widely investigated. Optimal LRCs via cyclic and constacyclic codes provide significant benefit of elegant algebraic structure and efficient encoding procedure. In this paper, we continue to consider the constructions of optimal LRCs via cyclic and constacyclic codes with long code length. Specifically, we first obtain two classes of qq-ary cyclic Singleton-optimal (n,k,d=6;r=2)(n, k, d=6;r=2)-LRCs with length n=3(q+1)n=3(q+1) when 3(q1)3 \mid (q-1) and qq is even, and length n=32(q+1)n=\frac{3}{2}(q+1) when 3(q1)3 \mid (q-1) and q1(mod 4)q \equiv 1(\bmod~4), respectively. To the best of our knowledge, this is the first construction of qq-ary cyclic Singleton-optimal LRCs with length n>q+1n>q+1 and minimum distance d5d \geq 5. On the other hand, an LRC acheiving the Hamming-type bound is called a perfect LRC. By using cyclic and constacyclic codes, we construct two new families of qq-ary perfect LRCs with length n=qm1q1n=\frac{q^m-1}{q-1}, minimum distance d=5d=5 and locality r=2r=2

    Cyclic LRC Codes, binary LRC codes, and upper bounds on the distance of cyclic codes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalize the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Trans. Inform. Theory, no. 8, 2014). In this paper we focus on optimal cyclic codes that arise from this construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance. The locality parameter of a cyclic code is related to the dual distance of this code, and we phrase our results in terms of upper bounds on the dual distance.Comment: 12pp., submitted for publication. An extended abstract of this submission was posted earlier as arXiv:1502.01414 and was published in Proceedings of the 2015 IEEE International Symposium on Information Theory, Hong Kong, China, June 14-19, 2015, pp. 1262--126

    Non-asymptotic Upper Bounds for Deletion Correcting Codes

    Full text link
    Explicit non-asymptotic upper bounds on the sizes of multiple-deletion correcting codes are presented. In particular, the largest single-deletion correcting code for qq-ary alphabet and string length nn is shown to be of size at most qnq(q1)(n1)\frac{q^n-q}{(q-1)(n-1)}. An improved bound on the asymptotic rate function is obtained as a corollary. Upper bounds are also derived on sizes of codes for a constrained source that does not necessarily comprise of all strings of a particular length, and this idea is demonstrated by application to sets of run-length limited strings. The problem of finding the largest deletion correcting code is modeled as a matching problem on a hypergraph. This problem is formulated as an integer linear program. The upper bound is obtained by the construction of a feasible point for the dual of the linear programming relaxation of this integer linear program. The non-asymptotic bounds derived imply the known asymptotic bounds of Levenshtein and Tenengolts and improve on known non-asymptotic bounds. Numerical results support the conjecture that in the binary case, the Varshamov-Tenengolts codes are the largest single-deletion correcting codes.Comment: 18 pages, 4 figure

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2w12w-1. When d2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2w1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2w12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2w12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2w12w-1 are also determined for all w6w\leq 6, except in two cases.Comment: 12 page

    Rewriting Codes for Joint Information Storage in Flash Memories

    Get PDF
    Memories whose storage cells transit irreversibly between states have been common since the start of the data storage technology. In recent years, flash memories have become a very important family of such memories. A flash memory cell has q states—state 0.1.....q-1 - and can only transit from a lower state to a higher state before the expensive erasure operation takes place. We study rewriting codes that enable the data stored in a group of cells to be rewritten by only shifting the cells to higher states. Since the considered state transitions are irreversible, the number of rewrites is bounded. Our objective is to maximize the number of times the data can be rewritten. We focus on the joint storage of data in flash memories, and study two rewriting codes for two different scenarios. The first code, called floating code, is for the joint storage of multiple variables, where every rewrite changes one variable. The second code, called buffer code, is for remembering the most recent data in a data stream. Many of the codes presented here are either optimal or asymptotically optimal. We also present bounds to the performance of general codes. The results show that rewriting codes can integrate a flash memory’s rewriting capabilities for different variables to a high degree

    Erasure List-Decodable Codes from Random and Algebraic Geometry Codes

    Full text link
    Erasure list decoding was introduced to correct a larger number of erasures with output of a list of possible candidates. In the present paper, we consider both random linear codes and algebraic geometry codes for list decoding erasure errors. The contributions of this paper are two-fold. Firstly, we show that, for arbitrary 0000 (RR and ϵ\epsilon are independent), with high probability a random linear code is an erasure list decodable code with constant list size 2O(1/ϵ)2^{O(1/\epsilon)} that can correct a fraction 1Rϵ1-R-\epsilon of erasures, i.e., a random linear code achieves the information-theoretic optimal trade-off between information rate and fraction of erasure errors. Secondly, we show that algebraic geometry codes are good erasure list-decodable codes. Precisely speaking, for any 0<R<10<R<1 and ϵ>0\epsilon>0, a qq-ary algebraic geometry code of rate RR from the Garcia-Stichtenoth tower can correct 1R1q1+1qϵ1-R-\frac{1}{\sqrt{q}-1}+\frac{1}{q}-\epsilon fraction of erasure errors with list size O(1/ϵ)O(1/\epsilon). This improves the Johnson bound applied to algebraic geometry codes. Furthermore, list decoding of these algebraic geometry codes can be implemented in polynomial time
    corecore