172 research outputs found

    Advancement in Soldering Technology Main Issues and Its Perspectives – Part III

    Get PDF
    Scientific and systematic study has lead to an increased knowledge of variety of materials and their different properties. For the development of semiconductor materials, nano technology has played a significant role. This has made it possible to offer tremendous innovation in semiconductor industry. The present paper discuss about a latest and novel soldering techniques using reballing process known as BGA & CGA technique. Also, requirement and selection criteria of different components used for this process and its applications are discussed

    Trends in assembling of advanced IC packages, Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF
    In the paper, an overview of the current trends in the development of advanced IC packages will be presented. It will be shown how switching from peripheral packages (DIP, QFP) to array packages (BGA, CSP) and multichip packages (SiP, MCM) affects the assembly processes of IC and performance of electronic systems. The progress in bonding technologies for semiconductor packages will be presented too. The idea of wire bonding, flip chip and TAB assembly will be shown together with the boundaries imposed by materials and technology. The construction of SiP packages will be explained in more detail. The paper addresses also the latest solutions in MCM packages

    Effects of Solder Paste Volume on PCBA Assembly Yield and Reliability

    Get PDF
    Solder paste printing is the most common method for attaching surface mount devices to printed circuit boards and it has been reported that a majority of all assembly defects occur during the stencil printing process. It is also recognized that the solder paste printing process is wholly responsible for the solder joint formation of leadless package technologies such as Land Grid Array (LGA) and Quad-Flat No-Lead (QFN) components and therefore is a determining factor in the long-term reliability of said devices. The goal of this experiment is to determine the acceptable lower limit for solder paste volume deposit tolerances during stencil printing process to ensure both good assembly yield and reliability expectations. Stencils with modified aperture dimensions at particular locations for LGA and QFN package footprints were designed in order to vary the solder paste volume deposited during the stencil printing process. Solder paste volumes were measured using Solder Paste Inspection (SPI) system. Low volume solder paste deposits were generated using the modified stencil designs to evaluate assemble yield. Accelerated Thermal Cycling (ATC) was used to determine the reliability of the solder joints. For the LGAs, solder joints formed with higher paste volume survived longer in ATC compared to lower volume joints. Low solder paste volume deposits did not affect BGA devices in ATC. Transfer efficiency numbers for both good assembly yield and good reliability are reported for LGA, QFN and BGA devices. This research provides valuable data because, very little data is available on solder paste volume tolerance limits in terms of assembly yield and reliability. Manufacturers often use ±50% of stencil aperture volume with no evidence of its effectiveness in determining yield and reliability of the solder joints

    Literature review on thermo-mechanical behavior of components for LED system-in-package

    Get PDF

    Advancement in Soldering Technology Main Issues and Its Perspectives - Part 1

    Get PDF
    The advancement of electronics and related instrumentation would be possible in mass production of electrical and electronics components/equipments with accomplishment and advances in soldering technology. With the advent of different components like resistors, capacitors, diodes, transistors and especially integrated circuits have changed the electronics world completely. As there is an intensive demand for package miniaturization and the density of surface mount components and other interconnects continues to advance, the technology for solder attachment methods must also improve and continue to evolve. This paper discusses the evolvement of soldering techniques, its applications and the criteria to select proper soldering techniques for specific applications

    Développement de procédés avancés d'encapsulation de composants microélectroniques basés sur les techniques de thermocompression

    Get PDF
    L'un des grands dĂ©fis de la recherche et dĂ©veloppement est d'optimiser l'ensemble du cycle de fabrication d'un produit microĂ©lectronique, depuis sa conception jusqu’à sa tenue mĂ©canique en service. Un objectif essentiel des entreprises Ă©tait de rĂ©duire le temps de cycles d’assemblage afin de minimiser les coĂ»ts de production. La phase d’assemblage des composants microĂ©lectroniques est l'une des Ă©tapes clĂ© qui doit ĂȘtre bien optimisĂ©e afin d’atteindre l’objectif de minimisation du temps de cycle. La mĂ©thode d'assemblage traditionnelle des puces par refusion (en anglais mass reflow MR) convenait gĂ©nĂ©ralement Ă  une fabrication Ă  grand volume, en particulier pour des puces Ă  pas standard d'environ 150 ÎŒm. Cependant, la forte demande du marchĂ© pour des interconnexions Ă  pas plus fin, pour permettre un nombre d'entrĂ©e/sortie (Input/Output : I/O) plus Ă©levĂ© dans un facteur de forme plus petit, a entraĂźnĂ© une transition du processus de la liaison MR conventionnel Ă  l'assemblage par thermocompression (en anglais ThermoCompression Bonding TCB). Bien que le procĂ©dĂ© TCB offre un assemblage de plus grande prĂ©cision et permet l'utilisation des pas d'interconnexion plus fins, il prĂ©sente Ă©galement de nouveaux dĂ©fis. L'un des problĂšmes majeurs de l'assemblage TCB est qu'il s'agit d'un processus assez long, dans lequel chaque puce doit ĂȘtre passĂ©e indĂ©pendamment Ă  travers un cycle TCB complet, incluant le chauffage, le maintien de la tempĂ©rature et le refroidissement. Cela entraĂźne une diminution significative de la productivitĂ© par rapport au MR. Le dĂ©bit de production peut ĂȘtre amĂ©liorĂ© en rĂ©duisant le temps nĂ©cessaire pour atteindre les tempĂ©ratures de processus requises. Cependant, des variations thermiques peuvent se produire aux interfaces de liaison, entraĂźnant une mauvaise uniformitĂ© de tempĂ©rature sur la surface de la puce et conduisant Ă  des rĂ©gions oĂč le point de fusion de la brasure n'est pas atteint. Ainsi, il est extrĂȘmement important de prĂ©voir et contrĂŽler la tempĂ©rature rĂ©elle Ă  l'interface de liaison afin d’obtenir une bonne uniformitĂ© thermique et des joints de brasure sans dĂ©faut. C'est dans cette perspective que s'inscrit les travaux menĂ©s dans la premiĂšre partie de la thĂšse. Le premier objectif de cette Ă©tude Ă©tait donc de dĂ©terminer la durĂ©e minimum de temps de chauffe nĂ©cessaire assurant une uniformitĂ© de tempĂ©rature optimal et par consĂ©quent des joints de brasure de bonne qualitĂ©. Pour atteindre cet objectif, il fallait alors proposer et valider une nouvelle mĂ©thodologie pour estimer la tempĂ©rature d'interface lors d'un processus TCB. Une Ă©valuation de l'influence de diffĂ©rentes vitesses de chauffe sur la distribution de tempĂ©rature Ă  travers la surface de la puce, ainsi que sur la qualitĂ© de liaison rĂ©sultante, a Ă©tĂ© rĂ©alisĂ©e Ă  l’aide d’un capteur de type RTD (). Les rĂ©sultats ont montrĂ© que les dĂ©fauts de brasure observĂ©s aux interfaces de liaison peuvent Ă©ventuellement ĂȘtre liĂ©s Ă  une mauvaise uniformitĂ© de tempĂ©rature, liĂ©e Ă  des vitesses de chauffe Ă©levĂ©es. Des variations thermiques acceptables ont Ă©tĂ© trouvĂ©es Ă  une faible vitesse de chauffage de 80°C/s. Par consĂ©quent, pour surmonter les tempĂ©ratures de processus Ă©levĂ©es et leurs effets nĂ©fastes sur la productivitĂ©, le dĂ©veloppement d'une nouvelle mĂ©thode d’assemblage TCB Ă  basse tempĂ©rature devient primordiale. Le dĂ©veloppement d’une nouvelle mĂ©thode de liaison par thermocompression Ă  l'Ă©tat solide dĂ©tecteur de tempĂ©rature rĂ©sistif, Resistance Temperature Detector en anglais Ă©tait donc notre second objectif dans cette Ă©tude. Cette mĂ©thode est basĂ©e sur la crĂ©ation d'une liaison mĂ©canique temporaire initiale au dĂ©but du processus de packaging (en utilisant une pression Ă  une tempĂ©rature infĂ©rieure au point de fusion de la brasure). Les joints de iv brasure seront entiĂšrement refondus Ă  la fin du processus de packaging, lorsque les billes de brasure BGA (ball-grid-array) seront brasĂ©es au substrat. Cette nouvelle mĂ©thode peut surmonter les limitations associĂ©es au processus TCB conventionnel, notamment la tempĂ©rature Ă©levĂ©e, le processus d'assemblage lent et les contraintes mĂ©caniques Ă©levĂ©es. Une investigation a Ă©tĂ© menĂ©e pour dĂ©terminer les conditions d'assemblage appropriĂ©es Ă  appliquer pendant ce processus. Des investigations supplĂ©mentaires ont Ă©tĂ© Ă©galement menĂ©es pour explorer le mĂ©canisme d'assemblage responsable de l’assemblage mĂ©canique temporaire. Les rĂ©sultats prĂ©liminaires de cette mĂ©thode sont prometteurs, montrant des joints de brasure de bonne qualitĂ© formĂ©s en un temps d'assemblage trĂšs court (6 secondes) et Ă  des tempĂ©ratures bien infĂ©rieures au TCB conventionnel (200°C)

    MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS

    Get PDF
    This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due tothe breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter- and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies

    Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    Get PDF
    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956

    Calcul du coefficient de constriction du flux thermique dans une matrice d'interconnexions en micro-Ă©lectronique

    Get PDF
    La modĂ©lisation du flux thermique Ă  travers une matrice d’interconnexions par Ă©lĂ©ments finis inclut de maniĂšre gĂ©nĂ©rale la modĂ©lisation complĂšte d’au moins un Ă©lĂ©ment d’interconnexion dans son intĂ©gralitĂ©. Ce procĂ©dĂ© de discrĂ©tisation numĂ©rique Ă©tant trĂšs couteux en temps, des modĂšles mathĂ©matiques prenant en compte la gĂ©omĂ©trie de l’interconnexion et les propriĂ©tĂ©s des matĂ©riaux permettent de remplacer l’interconnexion et l’éventuel matĂ©riaux de remplissage par une couche Ă©quivalente homogĂšne afin de diminuer le temps de calcul. Ces formules introduisent un paramĂštre appelĂ© paramĂštre de constriction qui aide Ă  reprĂ©senter la rĂ©sistance thermique due Ă  la constriction du flux par l’élĂ©ment d’interconnexion. Cependant, en comparant les modĂšles simplifiĂ©s aux modĂšles avec une modĂ©lisation complĂšte de l’interconnexion, il est apparu que les rĂ©sultats numĂ©riques obtenus prĂ©sentent des Ă©carts. Il en a donc Ă©tĂ© dĂ©duit que les formules pour calculer le paramĂštre de constriction n’étaient pas les mieux adaptĂ©es pour les gĂ©omĂ©tries complexes des Ă©lĂ©ments d’interconnexions qu’il fallait reprĂ©senter pour ce projet. Ce projet de maĂźtrise prĂ©sente l’influence sur les simulations des diffĂ©rents paramĂštres gĂ©omĂ©triques (Ă©paisseur de l’interconnexion, volume de l’élĂ©ment d’interconnexion, densitĂ© du maillage dĂ©fini par le nombre d’élĂ©ments d’interconnexions, prĂ©sence d’un dĂ©faut d’alignement entre les deux parties Ă  connecter) et des matĂ©riaux (diffĂ©rence de conductivitĂ© entre l’élĂ©ment d’interconnexion et le matĂ©riau de remplissage)

    Characterization of Vapour Phase Soldering Process Zone with Pressure Measurements

    Get PDF
    Purpose: With the spreading of Vapour Phase Soldering (VPS) technology it is important to understand and optimize the process itself. The paper presents a novel approach on the process zone characterization for direct feedback on the state of vapour, for better monitoring, control and understanding of the process. Design/methodology/approach: The simple model of condensation heating shows the importance of vapour concentration during condensation soldering. Different pressure sensors were applied in an experimental VPS station, where the hardware setup is focused for the current experiments. Static and dynamic pressure values are analyzed and correlated with additional thermal measurements. Findings: The results reveal the dynamics of the vapour blanket generation. The correlated measurements show different stages of the process initialization, highlighting better accuracy than sole temperature measurements of saturated vapour identification. It is possible to trace the height of the available saturated vapour blanket with static pressure measurements. Originality/value: The methods provide a completely novel approach from the aspect of process zone state variables and parameter characterization, focusing on pressure measurements. Practical implications: The VPS process may benefit from the more precise saturation detection, giving better control on the heat transfer, enabling more efficient production with the reduction of idle time, and resulting in better soldering quality. Social implications: Reducing the idle time of the VPS stations may result in better efficiency and smaller power consumption, reducing the environmental impact of the method
    • 

    corecore