1,201 research outputs found

    Transient Modeling of Ultra Wideband Pulse Propagation

    Get PDF

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Light-Matter Interaction in Hybrid Quantum Plasmonic Systems

    Get PDF
    Attempting to implement quantum information related applications utilizing atoms and photons, as they naturally form quantum systems supporting superposition states, hybrid quantum plasmonic systems emerged in the past as a platform to study and engineer light-matter interaction. This platform combines the unrivaled electromagnetic field localization of surface plasmon polaritons, boosting the light-matter coupling rate, with the tremendous integration potential of truly nanoscale structures, and both the significant emission rates of nanoantennas and photonic transmission velocities. In this work, a classical description of surface plasmon polaritons is combined with a light-matter interaction model based on a cavity quantum electrodynamical formalism. The resulting composite semi-classical method, introduced and described in this thesis, provides efficient and versatile means to simulate the dynamical behavior of radiative atomic transitions coupled to plasmonic cavity modes in the weak incoherent coupling regime. Both the emission into the far field and various dissipation mechanisms are included by expanding the model to an open quantum system. The variety of light-matter interaction applications that can be modeled with the outlined method is indicated by the four different exemplary scenarios detailed in the application chapter of this thesis. The classical description of localized surface plasmon polaritons is benchmarked by reproducing the experimental measurements of the molecular fluorescence manipulation through optical nanoantennas in a collaborative effort with experimental partners. Furthermore, in the weak light-matter coupling regime, the potential of achieving a higher nanoantenna functionality and simultaneously realizing more elaborate quantum dynamics is revealed by the three remaining applications. Each pivotally involving a bimodal nanoantenna and demonstrating different quantum optical phenomena, the implementation of cavity radiation mode conversion, non-classical cavity emission statistics, and non-classical cavity emission properties is shown and described in the application chapter

    Electromagnetic model subdivision and iterative solvers for surface and volume double higher order numerical methods and applications

    Get PDF
    2019 Fall.Includes bibliographical references.Higher order methods have been established in the numerical analysis of electromagnetic structures decreasing the number of unknowns compared to the low order discretization. In order to decrease memory requirements even further, model subdivision in the computational analysis of electrically large structures has been used. The technique is based on clustering elements and solving/approximating subsystems separately, and it is often implemented in conjunction with iterative solvers. This thesis addresses unique theoretical and implementation details specific to model subdivision of the structures discretized by the Double Higher Order (DHO) elements analyzed by i) Finite Element Method - Mode Matching (FEM-MM) technique for closed-region (waveguide) structures and ii) Surface Integral Equation Method of Moments (SIE-MoM) in combination with (Multi-Level) Fast Multipole Method for open-region bodies. Besides standard application in decreasing the model size, DHO FEM-MM is applied to modeling communication system in tunnels by means of Standard Impedance Boundary Condition (SIBC), and excellent agreement is achieved with measurements performed in Massif Central tunnel. To increase accuracy of the SIE-MoM computation, novel method for numerical evaluation of the 2-D surface integrals in MoM matrix entries has been improved to achieve better accuracy than traditional method. To demonstrate its efficiency and practicality, SIE-MoM technique is applied to analysis of the rain event containing significant percentage of the oscillating drops recorded by 2D video disdrometer. An excellent agreement with previously-obtained radar measurements has been established providing the benefits of accurately modeling precipitation particles

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Electromagnetic interactions in one-dimensional metamaterials

    Get PDF
    All data created during this research is available in ORE at https://doi.org/10.24378/exe.630Metamaterials offer the freedom to tune the rich electromagnetic coupling between the constituent meta-atoms to tailor their collective electromagnetic response. Therefore, a comprehensive understanding of the nature of electromagnetic interactions between meta-atoms is necessary for novel metamaterial design, which is provided in the first part of this thesis. The subsequent work in the thesis applies the understanding from the first part to design and demonstrate novel one-dimensional metamaterials that overcome the limitations of metamaterials proposed in literature or exhibit electromagnetic responses not previously observed. Split-ring Resonators (SRRs) are a fundamental building block of many electromagnetic metamaterials. In the first part of the work in this thesis, it is shown that bianisotropic SRRs (with magneto-electric cross-polarisation) when in close proximity to each other, exhibit a rich coupling that involves both electric and magnetic interactions. The strength and nature of the coupling between two identical SRRs are studied experimentally and computationally as a function of their separation and relative orientation. The electric and magnetic couplings are characterised and it is found that, when SRRs are close enough to be in each other's near-field, the electric and magnetic couplings may either reinforce each other or act in opposition. At larger separations retardation effects become important. The findings on the electromagnetic interactions between bianisotropic resonators are next applied to developing a one-dimensional ultra-wideband backward-wave metamaterial waveguide. The key concept on which the metamaterial waveguide is built is electro-inductive wave propagation, which has emerged as an attractive solution for designing backward-wave supporting metamaterials. Stacked metasurfaces etched with complementary SRRs (CSRRs) have also been shown to exhibit a broadband negative dispersion. It is demonstrated through experiment and numerical modeling, that the operational bandwidth of a CSRR metamaterial waveguide can be improved by restricting the cross-polarisation effects in the constituent meta-atoms. The metamaterial waveguide constructed using the modified non-bianisotropic CSRRs are found to have a fractional bandwidth of 56.3\% which, based on a thorough search of relevant literature, is the broadest reported value for an electro-inductive metamaterial. A traditional coupled-dipole toy-model is presented as a tool to understand the field interactions in CSRR based metamaterials, and to explain the origin of their negative dispersion response. This metamaterial waveguide should be of assistance in the design of broadband backward-wave metamaterial devices, with enhanced electro-inductive waveguiding effects. In the final part of the thesis, a one-dimensional metamaterial prototype that permits simultaneous forward- and backward-wave propagation is designed. Such a metamaterial waveguide could act as a microwave analogue of nanoparticle chains that support electromagnetic energy transfer with a positive or a negative dispersion due to the excitation of their longitudinal or transverse dipole modes. The symmetry of the designed hybrid meta-atom permits the co-existence of two non-interfering resonances closely separated in frequency. It is experimentally and computationally shown that the metamaterial waveguide supports simultaneous non-interacting forward- and backward-wave propagation in an overlapping frequency band. The proposed metamaterial design should be suitable for realising bidirectional wireless power transfer applications.EPSRC Centre for Doctoral Training in Electromagnetic Metamaterial
    corecore