121 research outputs found

    Characterizing, managing and monitoring the networks for the ATLAS data acquisition system

    Get PDF
    Particle physics studies the constituents of matter and the interactions between them. Many of the elementary particles do not exist under normal circumstances in nature. However, they can be created and detected during energetic collisions of other particles, as is done in particle accelerators. The Large Hadron Collider (LHC) being built at CERN will be the world's largest circular particle accelerator, colliding protons at energies of 14 TeV. Only a very small fraction of the interactions will give raise to interesting phenomena. The collisions produced inside the accelerator are studied using particle detectors. ATLAS is one of the detectors built around the LHC accelerator ring. During its operation, it will generate a data stream of 64 Terabytes/s. A Trigger and Data Acquisition System (TDAQ) is connected to ATLAS -- its function is to acquire digitized data from the detector and apply trigger algorithms to identify the interesting events. Achieving this requires the power of over 2000 computers plus an interconnecting network capable of sustaining a throughput of over 150 Gbit/s with minimal loss and delay. The implementation of this network required a detailed study of the available switching technologies to a high degree of precision in order to choose the appropriate components. We developed an FPGA-based platform (the GETB) for testing network devices. The GETB system proved to be flexible enough to be used as the ba sis of three different network-related projects. An analysis of the traffic pattern that is generated by the ATLAS data-taking applications was also possible thanks to the GETB. Then, while the network was being assembled, parts of the ATLAS detector started commissioning -- this task relied on a functional network. Thus it was imperative to be able to continuously identify existing and usable infrastructure and manage its operations. In addition, monitoring was required to detect any overload conditions with an indication where the excess demand was being generated. We developed tools to ease the maintenance of the network and to automatically produce inventory reports. We created a system that discovers the network topology and this permitted us to verify the installation and to track its progress. A real-time traffic visualization system has been built, allowing us to see at a glance which network segments are heavily utilized. Later, as the network achieves production status, it will be necessary to extend the monitoring to identify individual applications' use of the available bandwidth. We studied a traffic monitoring technology that will allow us to have a better understanding on how the network is used. This technology, based on packet sampling, gives the possibility of having a complete view of the network: not only its total capacity utilization, but also how this capacity is divided among users and software applicati ons. This thesis describes the establishment of a set of tools designed to characterize, monitor and manage complex, large-scale, high-performance networks. We describe in detail how these tools were designed, calibrated, deployed and exploited. The work that led to the development of this thesis spans over more than four years and closely follows the development phases of the ATLAS network: its design, its installation and finally, its current and future operation

    Digital parametric testing

    Get PDF

    Semantic enrichment of knowledge sources supported by domain ontologies

    Get PDF
    This thesis introduces a novel conceptual framework to support the creation of knowledge representations based on enriched Semantic Vectors, using the classical vector space model approach extended with ontological support. One of the primary research challenges addressed here relates to the process of formalization and representation of document contents, where most existing approaches are limited and only take into account the explicit, word-based information in the document. This research explores how traditional knowledge representations can be enriched through incorporation of implicit information derived from the complex relationships (semantic associations) modelled by domain ontologies with the addition of information presented in documents. The relevant achievements pursued by this thesis are the following: (i) conceptualization of a model that enables the semantic enrichment of knowledge sources supported by domain experts; (ii) development of a method for extending the traditional vector space, using domain ontologies; (iii) development of a method to support ontology learning, based on the discovery of new ontological relations expressed in non-structured information sources; (iv) development of a process to evaluate the semantic enrichment; (v) implementation of a proof-of-concept, named SENSE (Semantic Enrichment kNowledge SourcEs), which enables to validate the ideas established under the scope of this thesis; (vi) publication of several scientific articles and the support to 4 master dissertations carried out by the department of Electrical and Computer Engineering from FCT/UNL. It is worth mentioning that the work developed under the semantic referential covered by this thesis has reused relevant achievements within the scope of research European projects, in order to address approaches which are considered scientifically sound and coherent and avoid “reinventing the wheel”.European research projects - CoSpaces (IST-5-034245), CRESCENDO (FP7-234344) and MobiS (FP7-318452

    JTEC Panel report on electronic manufacturing and packaging in Japan

    Get PDF
    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies

    NASA Tech Briefs, June 1993

    Get PDF
    Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Advanced Automation for Space Missions

    Get PDF
    The feasibility of using machine intelligence, including automation and robotics, in future space missions was studied
    corecore