242 research outputs found

    Endoscopic Tactile Capsule for Non-Polypoid Colorectal Tumour Detection

    Get PDF
    An endoscopic tactile robotic capsule, embedding miniaturized MEMS force sensors, is presented. The capsule is conceived to provide automatic palpation of non-polypoid colorectal tumours during colonoscopy, since it is characterized by high degree of dysplasia, higher invasiveness and lower detection rates with respect to polyps. A first test was performed employing a silicone phantom that embedded inclusions with variable hardness and curvature. A hardness-based classification was implemented, demonstrating detection robustness to curvature variation. By comparing a set of supervised classification algorithms, a weighted 3-nearest neighbor classifier was selected. A bias force normalization model was introduced in order to make different acquisition sets consistent. Parameters of this model were chosen through a particle swarm optimization method. Additionally, an ex-vivo test was performed to assess the capsule detection performance when magnetically-driven along a colonic tissue. Lumps were identified as voltage peaks with a prominence depending on the total magnetic force applied to the capsule. Accuracy of 94 % in hardness classification was achieved, while a 100 % accuracy is obtained for the lump detection within a tolerance of 5 mm from the central path described by the capsule. In real application scenario, we foresee our device aiding physicians to detect tumorous tissues

    A Framework for Tumor Localization in Robot-Assisted Minimally Invasive Surgery

    Get PDF
    Manual palpation of tissue is frequently used in open surgery, e.g., for localization of tumors and buried vessels and for tissue characterization. The overall objective of this work is to explore how tissue palpation can be performed in Robot-Assisted Minimally Invasive Surgery (RAMIS) using laparoscopic instruments conventionally used in RAMIS. This thesis presents a framework where a surgical tool is moved teleoperatively in a manner analogous to the repetitive pressing motion of a finger during manual palpation. We interpret the changes in parameters due to this motion such as the applied force and the resulting indentation depth to accurately determine the variation in tissue stiffness. This approach requires the sensorization of the laparoscopic tool for force sensing. In our work, we have used a da Vinci needle driver which has been sensorized in our lab at CSTAR for force sensing using Fiber Bragg Grating (FBG). A computer vision algorithm has been developed for 3D surgical tool-tip tracking using the da Vinci \u27s stereo endoscope. This enables us to measure changes in surface indentation resulting from pressing the needle driver on the tissue. The proposed palpation framework is based on the hypothesis that the indentation depth is inversely proportional to the tissue stiffness when a constant pressing force is applied. This was validated in a telemanipulated setup using the da Vinci surgical system with a phantom in which artificial tumors were embedded to represent areas of different stiffnesses. The region with high stiffness representing tumor and region with low stiffness representing healthy tissue showed an average indentation depth change of 5.19 mm and 10.09 mm respectively while maintaining a maximum force of 8N during robot-assisted palpation. These indentation depth variations were then distinguished using the k-means clustering algorithm to classify groups of low and high stiffnesses. The results were presented in a colour-coded map. The unique feature of this framework is its use of a conventional laparoscopic tool and minimal re-design of the existing da Vinci surgical setup. Additional work includes a vision-based algorithm for tracking the motion of the tissue surface such as that of the lung resulting from respiratory and cardiac motion. The extracted motion information was analyzed to characterize the lung tissue stiffness based on the lateral strain variations as the surface inflates and deflates

    Conditioned haptic perception for 3D localization of nodules in soft tissue palpation with a variable stiffness probe

    Get PDF
    This paper provides a solution for fast haptic information gain during soft tissue palpation using a Variable Lever Mechanism (VLM) probe. More specifically, we investigate the impact of stiffness variation of the probe to condition likelihood functions of the kinesthetic force and tactile sensors measurements during a palpation task for two sweeping directions. Using knowledge obtained from past probing trials or Finite Element (FE) simulations, we implemented this likelihood conditioning in an autonomous palpation control strategy. Based on a recursive Bayesian inferencing framework, this new control strategy adapts the sweeping direction and the stiffness of the probe to detect abnormal stiff inclusions in soft tissues. This original control strategy for compliant palpation probes shows a sub-millimeter accuracy for the 3D localization of the nodules in a soft tissue phantom as well as a 100% reliability detecting the existence of nodules in a soft phantom

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators

    A mechatronic platform for computer aided detection of nodules in anatomopathological analyses via stiffness and ultrasound measurements

    Get PDF
    This study presents a platform for ex-vivo detection of cancer nodules, addressing automation of medical diagnoses in surgery and associated histological analyses. The proposed approach takes advantage of the property of cancer to alter the mechanical and acoustical properties of tissues, because of changes in stiffness and density. A force sensor and an ultrasound probe were combined to detect such alterations during force-regulated indentations. To explore the specimens, regardless of their orientation and shape, a scanned area of the test sample was defined using shape recognition applying optical background subtraction to the images captured by a camera. The motorized platform was validated using seven phantom tissues, simulating the mechanical and acoustical properties of ex-vivo diseased tissues, including stiffer nodules that can be encountered in pathological conditions during histological analyses. Results demonstrated the platform’s ability to automatically explore and identify the inclusions in the phantom. Overall, the system was able to correctly identify up to 90.3% of the inclusions by means of stiffness in combination with ultrasound measurements, paving pathways towards robotic palpation during intraoperative examinations
    corecore