604 research outputs found

    Biologically motivated keypoint detection for RGB-D data

    Get PDF
    With the emerging interest in active vision, computer vision researchers have been increasingly concerned with the mechanisms of attention. Therefore, several visual attention computational models inspired by the human visual system, have been developed, aiming at the detection of regions of interest in images. This thesis is focused on selective visual attention, which provides a mechanism for the brain to focus computational resources on an object at a time, guided by low-level image properties (Bottom-Up attention). The task of recognizing objects in different locations is achieved by focusing on different locations, one at a time. Given the computational requirements of the models proposed, the research in this area has been mainly of theoretical interest. More recently, psychologists, neurobiologists and engineers have developed cooperation's and this has resulted in considerable benefits. The first objective of this doctoral work is to bring together concepts and ideas from these different research areas, providing a study of the biological research on human visual system and a discussion of the interdisciplinary knowledge in this area, as well as the state-of-art on computational models of visual attention (bottom-up). Normally, the visual attention is referred by engineers as saliency: when people fix their look in a particular region of the image, that's because that region is salient. In this research work, saliency methods are presented based on their classification (biological plausible, computational or hybrid) and in a chronological order. A few salient structures can be used for applications like object registration, retrieval or data simplification, being possible to consider these few salient structures as keypoints when aiming at performing object recognition. Generally, object recognition algorithms use a large number of descriptors extracted in a dense set of points, which comes along with very high computational cost, preventing real-time processing. To avoid the problem of the computational complexity required, the features have to be extracted from a small set of points, usually called keypoints. The use of keypoint-based detectors allows the reduction of the processing time and the redundancy in the data. Local descriptors extracted from images have been extensively reported in the computer vision literature. Since there is a large set of keypoint detectors, this suggests the need of a comparative evaluation between them. In this way, we propose to do a description of 2D and 3D keypoint detectors, 3D descriptors and an evaluation of existing 3D keypoint detectors in a public available point cloud library with 3D real objects. The invariance of the 3D keypoint detectors was evaluated according to rotations, scale changes and translations. This evaluation reports the robustness of a particular detector for changes of point-of-view and the criteria used are the absolute and the relative repeatability rate. In our experiments, the method that achieved better repeatability rate was the ISS3D method. The analysis of the human visual system and saliency maps detectors with biological inspiration led to the idea of making an extension for a keypoint detector based on the color information in the retina. Such proposal produced a 2D keypoint detector inspired by the behavior of the early visual system. Our method is a color extension of the BIMP keypoint detector, where we include both color and intensity channels of an image: color information is included in a biological plausible way and multi-scale image features are combined into a single keypoints map. This detector is compared against state-of-art detectors and found particularly well-suited for tasks such as category and object recognition. The recognition process is performed by comparing the extracted 3D descriptors in the locations indicated by the keypoints after mapping the 2D keypoints locations to the 3D space. The evaluation allowed us to obtain the best pair keypoint detector/descriptor on a RGB-D object dataset. Using our keypoint detector and the SHOTCOLOR descriptor a good category recognition rate and object recognition rate were obtained, and it is with the PFHRGB descriptor that we obtain the best results. A 3D recognition system involves the choice of keypoint detector and descriptor. A new method for the detection of 3D keypoints on point clouds is presented and a benchmarking is performed between each pair of 3D keypoint detector and 3D descriptor to evaluate their performance on object and category recognition. These evaluations are done in a public database of real 3D objects. Our keypoint detector is inspired by the behavior and neural architecture of the primate visual system: the 3D keypoints are extracted based on a bottom-up 3D saliency map, which is a map that encodes the saliency of objects in the visual environment. The saliency map is determined by computing conspicuity maps (a combination across different modalities) of the orientation, intensity and color information, in a bottom-up and in a purely stimulusdriven manner. These three conspicuity maps are fused into a 3D saliency map and, finally, the focus of attention (or "keypoint location") is sequentially directed to the most salient points in this map. Inhibiting this location automatically allows the system to attend to the next most salient location. The main conclusions are: with a similar average number of keypoints, our 3D keypoint detector outperforms the other eight 3D keypoint detectors evaluated by achiving the best result in 32 of the evaluated metrics in the category and object recognition experiments, when the second best detector only obtained the best result in 8 of these metrics. The unique drawback is the computational time, since BIK-BUS is slower than the other detectors. Given that differences are big in terms of recognition performance, size and time requirements, the selection of the keypoint detector and descriptor has to be matched to the desired task and we give some directions to facilitate this choice. After proposing the 3D keypoint detector, the research focused on a robust detection and tracking method for 3D objects by using keypoint information in a particle filter. This method consists of three distinct steps: Segmentation, Tracking Initialization and Tracking. The segmentation is made to remove all the background information, reducing the number of points for further processing. In the initialization, we use a keypoint detector with biological inspiration. The information of the object that we want to follow is given by the extracted keypoints. The particle filter does the tracking of the keypoints, so with that we can predict where the keypoints will be in the next frame. In a recognition system, one of the problems is the computational cost of keypoint detectors with this we intend to solve this problem. The experiments with PFBIKTracking method are done indoors in an office/home environment, where personal robots are expected to operate. The Tracking Error evaluates the stability of the general tracking method. We also quantitatively evaluate this method using a "Tracking Error". Our evaluation is done by the computation of the keypoint and particle centroid. Comparing our system that the tracking method which exists in the Point Cloud Library, we archive better results, with a much smaller number of points and computational time. Our method is faster and more robust to occlusion when compared to the OpenniTracker.Com o interesse emergente na visão ativa, os investigadores de visão computacional têm estado cada vez mais preocupados com os mecanismos de atenção. Por isso, uma série de modelos computacionais de atenção visual, inspirado no sistema visual humano, têm sido desenvolvidos. Esses modelos têm como objetivo detetar regiões de interesse nas imagens. Esta tese está focada na atenção visual seletiva, que fornece um mecanismo para que o cérebro concentre os recursos computacionais num objeto de cada vez, guiado pelas propriedades de baixo nível da imagem (atenção Bottom-Up). A tarefa de reconhecimento de objetos em diferentes locais é conseguida através da concentração em diferentes locais, um de cada vez. Dados os requisitos computacionais dos modelos propostos, a investigação nesta área tem sido principalmente de interesse teórico. Mais recentemente, psicólogos, neurobiólogos e engenheiros desenvolveram cooperações e isso resultou em benefícios consideráveis. No início deste trabalho, o objetivo é reunir os conceitos e ideias a partir dessas diferentes áreas de investigação. Desta forma, é fornecido o estudo sobre a investigação da biologia do sistema visual humano e uma discussão sobre o conhecimento interdisciplinar da matéria, bem como um estado de arte dos modelos computacionais de atenção visual (bottom-up). Normalmente, a atenção visual é denominada pelos engenheiros como saliência, se as pessoas fixam o olhar numa determinada região da imagem é porque esta região é saliente. Neste trabalho de investigação, os métodos saliência são apresentados em função da sua classificação (biologicamente plausível, computacional ou híbrido) e numa ordem cronológica. Algumas estruturas salientes podem ser usadas, em vez do objeto todo, em aplicações tais como registo de objetos, recuperação ou simplificação de dados. É possível considerar estas poucas estruturas salientes como pontos-chave, com o objetivo de executar o reconhecimento de objetos. De um modo geral, os algoritmos de reconhecimento de objetos utilizam um grande número de descritores extraídos num denso conjunto de pontos. Com isso, estes têm um custo computacional muito elevado, impedindo que o processamento seja realizado em tempo real. A fim de evitar o problema da complexidade computacional requerido, as características devem ser extraídas a partir de um pequeno conjunto de pontos, geralmente chamados pontoschave. O uso de detetores de pontos-chave permite a redução do tempo de processamento e a quantidade de redundância dos dados. Os descritores locais extraídos a partir das imagens têm sido amplamente reportados na literatura de visão por computador. Uma vez que existe um grande conjunto de detetores de pontos-chave, sugere a necessidade de uma avaliação comparativa entre eles. Desta forma, propomos a fazer uma descrição dos detetores de pontos-chave 2D e 3D, dos descritores 3D e uma avaliação dos detetores de pontos-chave 3D existentes numa biblioteca de pública disponível e com objetos 3D reais. A invariância dos detetores de pontoschave 3D foi avaliada de acordo com variações nas rotações, mudanças de escala e translações. Essa avaliação retrata a robustez de um determinado detetor no que diz respeito às mudanças de ponto-de-vista e os critérios utilizados são as taxas de repetibilidade absoluta e relativa. Nas experiências realizadas, o método que apresentou melhor taxa de repetibilidade foi o método ISS3D. Com a análise do sistema visual humano e dos detetores de mapas de saliência com inspiração biológica, surgiu a ideia de se fazer uma extensão para um detetor de ponto-chave com base na informação de cor na retina. A proposta produziu um detetor de ponto-chave 2D inspirado pelo comportamento do sistema visual. O nosso método é uma extensão com base na cor do detetor de ponto-chave BIMP, onde se incluem os canais de cor e de intensidade de uma imagem. A informação de cor é incluída de forma biológica plausível e as características multi-escala da imagem são combinadas num único mapas de pontos-chave. Este detetor é comparado com os detetores de estado-da-arte e é particularmente adequado para tarefas como o reconhecimento de categorias e de objetos. O processo de reconhecimento é realizado comparando os descritores 3D extraídos nos locais indicados pelos pontos-chave. Para isso, as localizações do pontos-chave 2D têm de ser convertido para o espaço 3D. Isto foi possível porque o conjunto de dados usado contém a localização de cada ponto de no espaço 2D e 3D. A avaliação permitiu-nos obter o melhor par detetor de ponto-chave/descritor num RGB-D object dataset. Usando o nosso detetor de ponto-chave e o descritor SHOTCOLOR, obtemos uma noa taxa de reconhecimento de categorias e para o reconhecimento de objetos é com o descritor PFHRGB que obtemos os melhores resultados. Um sistema de reconhecimento 3D envolve a escolha de detetor de ponto-chave e descritor, por isso é apresentado um novo método para a deteção de pontos-chave em nuvens de pontos 3D e uma análise comparativa é realizada entre cada par de detetor de ponto-chave 3D e descritor 3D para avaliar o desempenho no reconhecimento de categorias e de objetos. Estas avaliações são feitas numa base de dados pública de objetos 3D reais. O nosso detetor de ponto-chave é inspirado no comportamento e na arquitetura neural do sistema visual dos primatas. Os pontos-chave 3D são extraídas com base num mapa de saliências 3D bottom-up, ou seja, um mapa que codifica a saliência dos objetos no ambiente visual. O mapa de saliência é determinada pelo cálculo dos mapas de conspicuidade (uma combinação entre diferentes modalidades) da orientação, intensidade e informações de cor de forma bottom-up e puramente orientada para o estímulo. Estes três mapas de conspicuidade são fundidos num mapa de saliência 3D e, finalmente, o foco de atenção (ou "localização do ponto-chave") está sequencialmente direcionado para os pontos mais salientes deste mapa. Inibir este local permite que o sistema automaticamente orientado para próximo local mais saliente. As principais conclusões são: com um número médio similar de pontos-chave, o nosso detetor de ponto-chave 3D supera os outros oito detetores de pontos-chave 3D avaliados, obtendo o melhor resultado em 32 das métricas avaliadas nas experiências do reconhecimento das categorias e dos objetos, quando o segundo melhor detetor obteve apenas o melhor resultado em 8 dessas métricas. A única desvantagem é o tempo computacional, uma vez que BIK-BUS é mais lento do que os outros detetores. Dado que existem grandes diferenças em termos de desempenho no reconhecimento, de tamanho e de tempo, a seleção do detetor de ponto-chave e descritor tem de ser interligada com a tarefa desejada e nós damos algumas orientações para facilitar esta escolha neste trabalho de investigação. Depois de propor um detetor de ponto-chave 3D, a investigação incidiu sobre um método robusto de deteção e tracking de objetos 3D usando as informações dos pontos-chave num filtro de partículas. Este método consiste em três etapas distintas: Segmentação, Inicialização do Tracking e Tracking. A segmentação é feita de modo a remover toda a informação de fundo, a fim de reduzir o número de pontos para processamento futuro. Na inicialização, usamos um detetor de ponto-chave com inspiração biológica. A informação do objeto que queremos seguir é dada pelos pontos-chave extraídos. O filtro de partículas faz o acompanhamento dos pontoschave, de modo a se poder prever onde os pontos-chave estarão no próximo frame. As experiências com método PFBIK-Tracking são feitas no interior, num ambiente de escritório/casa, onde se espera que robôs pessoais possam operar. Também avaliado quantitativamente este método utilizando um "Tracking Error". A avaliação passa pelo cálculo das centróides dos pontos-chave e das partículas. Comparando o nosso sistema com o método de tracking que existe na biblioteca usada no desenvolvimento, nós obtemos melhores resultados, com um número muito menor de pontos e custo computacional. O nosso método é mais rápido e mais robusto em termos de oclusão, quando comparado com o OpenniTracker

    A biologically inspired spiking model of visual processing for image feature detection

    Get PDF
    To enable fast reliable feature matching or tracking in scenes, features need to be discrete and meaningful, and hence edge or corner features, commonly called interest points are often used for this purpose. Experimental research has illustrated that biological vision systems use neuronal circuits to extract particular features such as edges or corners from visual scenes. Inspired by this biological behaviour, this paper proposes a biologically inspired spiking neural network for the purpose of image feature extraction. Standard digital images are processed and converted to spikes in a manner similar to the processing that transforms light into spikes in the retina. Using a hierarchical spiking network, various types of biologically inspired receptive fields are used to extract progressively complex image features. The performance of the network is assessed by examining the repeatability of extracted features with visual results presented using both synthetic and real images

    Real-time object detection using monocular vision for low-cost automotive sensing systems

    Get PDF
    This work addresses the problem of real-time object detection in automotive environments using monocular vision. The focus is on real-time feature detection, tracking, depth estimation using monocular vision and finally, object detection by fusing visual saliency and depth information. Firstly, a novel feature detection approach is proposed for extracting stable and dense features even in images with very low signal-to-noise ratio. This methodology is based on image gradients, which are redefined to take account of noise as part of their mathematical model. Each gradient is based on a vector connecting a negative to a positive intensity centroid, where both centroids are symmetric about the centre of the area for which the gradient is calculated. Multiple gradient vectors define a feature with its strength being proportional to the underlying gradient vector magnitude. The evaluation of the Dense Gradient Features (DeGraF) shows superior performance over other contemporary detectors in terms of keypoint density, tracking accuracy, illumination invariance, rotation invariance, noise resistance and detection time. The DeGraF features form the basis for two new approaches that perform dense 3D reconstruction from a single vehicle-mounted camera. The first approach tracks DeGraF features in real-time while performing image stabilisation with minimal computational cost. This means that despite camera vibration the algorithm can accurately predict the real-world coordinates of each image pixel in real-time by comparing each motion-vector to the ego-motion vector of the vehicle. The performance of this approach has been compared to different 3D reconstruction methods in order to determine their accuracy, depth-map density, noise-resistance and computational complexity. The second approach proposes the use of local frequency analysis of i ii gradient features for estimating relative depth. This novel method is based on the fact that DeGraF gradients can accurately measure local image variance with subpixel accuracy. It is shown that the local frequency by which the centroid oscillates around the gradient window centre is proportional to the depth of each gradient centroid in the real world. The lower computational complexity of this methodology comes at the expense of depth map accuracy as the camera velocity increases, but it is at least five times faster than the other evaluated approaches. This work also proposes a novel technique for deriving visual saliency maps by using Division of Gaussians (DIVoG). In this context, saliency maps express the difference of each image pixel is to its surrounding pixels across multiple pyramid levels. This approach is shown to be both fast and accurate when evaluated against other state-of-the-art approaches. Subsequently, the saliency information is combined with depth information to identify salient regions close to the host vehicle. The fused map allows faster detection of high-risk areas where obstacles are likely to exist. As a result, existing object detection algorithms, such as the Histogram of Oriented Gradients (HOG) can execute at least five times faster. In conclusion, through a step-wise approach computationally-expensive algorithms have been optimised or replaced by novel methodologies to produce a fast object detection system that is aligned to the requirements of the automotive domain

    Trademark image retrieval by local features

    Get PDF
    The challenge of abstract trademark image retrieval as a test of machine vision algorithms has attracted considerable research interest in the past decade. Current operational trademark retrieval systems involve manual annotation of the images (the current ‘gold standard’). Accordingly, current systems require a substantial amount of time and labour to access, and are therefore expensive to operate. This thesis focuses on the development of algorithms that mimic aspects of human visual perception in order to retrieve similar abstract trademark images automatically. A significant category of trademark images are typically highly stylised, comprising a collection of distinctive graphical elements that often include geometric shapes. Therefore, in order to compare the similarity of such images the principal aim of this research has been to develop a method for solving the partial matching and shape perception problem. There are few useful techniques for partial shape matching in the context of trademark retrieval, because those existing techniques tend not to support multicomponent retrieval. When this work was initiated most trademark image retrieval systems represented images by means of global features, which are not suited to solving the partial matching problem. Instead, the author has investigated the use of local image features as a means to finding similarities between trademark images that only partially match in terms of their subcomponents. During the course of this work, it has been established that the Harris and Chabat detectors could potentially perform sufficiently well to serve as the basis for local feature extraction in trademark image retrieval. Early findings in this investigation indicated that the well established SIFT (Scale Invariant Feature Transform) local features, based on the Harris detector, could potentially serve as an adequate underlying local representation for matching trademark images. There are few researchers who have used mechanisms based on human perception for trademark image retrieval, implying that the shape representations utilised in the past to solve this problem do not necessarily reflect the shapes contained in these image, as characterised by human perception. In response, a ii practical approach to trademark image retrieval by perceptual grouping has been developed based on defining meta-features that are calculated from the spatial configurations of SIFT local image features. This new technique measures certain visual properties of the appearance of images containing multiple graphical elements and supports perceptual grouping by exploiting the non-accidental properties of their configuration. Our validation experiments indicated that we were indeed able to capture and quantify the differences in the global arrangement of sub-components evident when comparing stylised images in terms of their visual appearance properties. Such visual appearance properties, measured using 17 of the proposed metafeatures, include relative sub-component proximity, similarity, rotation and symmetry. Similar work on meta-features, based on the above Gestalt proximity, similarity, and simplicity groupings of local features, had not been reported in the current computer vision literature at the time of undertaking this work. We decided to adopted relevance feedback to allow the visual appearance properties of relevant and non-relevant images returned in response to a query to be determined by example. Since limited training data is available when constructing a relevance classifier by means of user supplied relevance feedback, the intrinsically non-parametric machine learning algorithm ID3 (Iterative Dichotomiser 3) was selected to construct decision trees by means of dynamic rule induction. We believe that the above approach to capturing high-level visual concepts, encoded by means of meta-features specified by example through relevance feedback and decision tree classification, to support flexible trademark image retrieval and to be wholly novel. The retrieval performance the above system was compared with two other state-of-the-art image trademark retrieval systems: Artisan developed by Eakins (Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using relevance feedback, our system achieves higher average normalised precision than either of the systems developed by Eakins’ or Jiang. However, while our trademark image query and database set is based on an image dataset used by Eakins, we employed different numbers of images. It was not possible to access to the same query set and image database used in the evaluation of Jiang’s trademark iii image retrieval system evaluation. Despite these differences in evaluation methodology, our approach would appear to have the potential to improve retrieval effectiveness
    corecore