586 research outputs found

    The computation of blood flow waveforms from digital X-ray angiographic data

    Get PDF
    This thesis investigates a novel technique for the quantitative measurement of pulsatile blood flow waveforms and mean blood flow rates using digital X-ray angiographic data. Blood flow waveforms were determined following an intra-arterial injection of contrast material. Instantaneous blood velocities were estimated by generating a 'parametric image' from dynamic X-ray angiographic images in which the image grey-level represented contrast material concentration as a function of time and true distance in three dimensions along a vessel segment. Adjacent concentration-distance profiles in the parametric image of iodine concentration versus distance and time were shifted along the vessel axis until a match occurred. A match was defined as the point where the mean sum of the squares of the differences between the two profiles was a minimum. The distance translated per frame interval gave the instantaneous contrast material bolus velocity. The technique initially was validated using synthetic data from a computer simulation of angiographic data which included the effect of pulsatile blood flow and X-ray quantum noise. The data were generated for a range of vessels from 2 mm to 6 mm in diameter. Different injection techniques and their effects on the accuracy of blood flow measurements were studied. Validation of the technique was performed using an experimental phantom of blood circulation, consisting of a pump, flexible plastic tubing, the tubular probe of an electromagnetic flowmeter and a solenoid to simulate a pulsatile flow waveform which included reverse flow. The technique was validated for both two- and three-dimensional representations of the blood vessel, for various flow rates and calibre sizes. The effects of various physical factors were studied, including the distance between injection and imaging sites and the length of artery analysed. Finally, this method was applied to clinical data from femoral arteries and arteries in the head and neck

    3D reconstruction of cerebral blood flow and vessel morphology from x-ray rotational angiography

    Get PDF
    Three-dimensional (3D) information on blood flow and vessel morphology is important when assessing cerebrovascular disease and when monitoring interventions. Rotational angiography is nowadays routinely used to determine the geometry of the cerebral vasculature. To this end, contrast agent is injected into one of the supplying arteries and the x-ray system rotates around the head of the patient while it acquires a sequence of x-ray images. Besides information on the 3D geometry, this sequence also contains information on blood flow, as it is possible to observe how the contrast agent is transported by the blood. The main goal of this thesis is to exploit this information for the quantitative analysis of blood flow. I propose a model-based method, called flow map fitting, which determines the blood flow waveform and the mean volumetric flow rate in the large cerebral arteries. The method uses a model of contrast agent transport to determine the flow parameters from the spatio-temporal progression of the contrast agent concentration, represented by a flow map. Furthermore, it overcomes artefacts due to the rotation (overlapping vessels and foreshortened vessels at some projection angles) of the c-arm using a reliability map. For the flow quantification, small changes to the clinical protocol of rotational angiography are desirable. These, however, hamper the standard 3D reconstruction. Therefore, a new method for the 3D reconstruction of the vessel morphology which is tailored to this application is also presented. To the best of my knowledge, I have presented the first quantitative results for blood flow quantification from rotational angiography. Additionally, the model-based approach overcomes several problems which are known from flow quantification methods for planar angiography. The method was mainly validated on images from different phantom experiments. In most cases, the relative error was between 5% and 10% for the volumetric mean flow rate and between 10% and 15% for the blood flow waveform. Additionally, the applicability of the flow model was shown on clinical images from planar angiographic acquisitions. From this, I conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions

    VALIDATION OF COMPUTATIONAL FLUID DYNAMIC SIMULATIONS OF MEMBRANE ARTIFICIAL LUNGS WITH X-RAY IMAGING

    Get PDF
    The functional performance of membrane oxygenators is directly related to the perfusion dynamics of blood flow through the fiber bundle. Non-uniform flow and design characteristics can limit gas exchange efficiency and influence susceptibility of thrombus development in the fiber membrane. Computational fluid dynamics (CFD) is a powerful tool for predicting properties of the flow field based on prescribed geometrical domains and boundary conditions. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. A novel approach was developed using biplane X-ray digital subtraction angiography to visualize flow through a commercial membrane artificial lung at 1–4.5 L/min. Permeability based on the coefficients of the Ergun equation, α and β, were experimentally determined to be 180 and 2.4, respectively, and the equivalent spherical diameter was shown to be approximately equal to the outer fiber diameter. For all flow rates tested, biplane image projections revealed non-uniform radial perfusion through the annular fiber bundle, yet without flow bias due to the axisymmetric position of the outlet. At 1 L/min, approximately 78.2% of the outward velocity component was in the radial (horizontal) plane verses 92.0% at 4.5 L/min. The CFD studies were unable to predict the non-radial component of the outward perfusion. Two-dimensional velocity fields were generated from the radiographs using a cross-correlation tracking algorithm and compared with analogous image planes from the CFD simulations. Velocities in the non-porous regions differed by an average of 11% versus the experimental values, but simulated velocities in the fiber bundle were on average 44% lower than experimental. A corrective factor reduced the average error differences in the porous medium to 6%. Finally, biplane image pairs were reconstructed to show 3-D transient perfusion through the device. The methods developed from this research provide tools for more accurate assessments of fluid flow through membrane oxygenators. By identifying non-invasive techniques to allow direct analysis of numerical and experimental velocity fields, researchers can better evaluate device performance of new prototype designs

    Restenosis after percutaneous transluminal coronary angioplasty : a quantitative angiographic approach.

    Get PDF
    The first report of a nonsurgical technique of dilating areas of obstructive atherosclerotic disease in the human arterial system was reported by Dotter and Judkins in 1964 [1 ]. The technique described was for peripheral arteries, and involved the passage of tapered dilating catheters of increasing diameter over a guidewire. This technique had a limited following and was never widely accepted as an established mode of treatment. 1n 1973 the use of a balloon dilatation catheter in humans was reported. This consisted of the passage of a double lumen dilatation catheter with a non-elastic balloon through an area of stenosis in the femora-popliteal and iliac arteries. This balloon was then inflated to dilate the stenosis [2]. The late Andreas Griintzig adapted this technique for use in human coronary arteries. 1n 1977 he first presented the experimental results of dilating coronary artery stenosis [3]. The fir

    Evaluation of pulse wave analysis to assess coronary artery disease

    No full text
    Conventional risk factors for cardiovascular disease, such as age, gender, hyperlipidaemia and hypertension are useful clinical markers of coronary artery disease (CAD) in asymptomatic patients or those without a prior history of atherosclerosis. In patients referred for a cardiology opinion, modification of risk factors by lifestyle changes and cardiac medications as well as confounding co-morbidities limit the value of these markers. Patients are often referred for diagnostic coronary angiography to determine the presence and severity of CAD, stratify the risk of future events and determine appropriate management. Despite the use of a variety of tests to best identify those requiring angiography, up to half of all patients referred do not have significant disease. Pulse wave analysis (PWA) is a novel method to derive indices of central (aortic) blood pressure and arterial stiffness. Pressure waveforms are obtained non-invasively from the radial artery using a simple tonometry method and have been shown to correlate with clinical outcomes and cardiovascular events in selected populations. This thesis will explore, for the first time, the clinical potential for PWA as a non-invasive marker of CAD in an unselected contemporary cohort of patients referred for elective coronary angiography. The main hypotheses tested are first that PWA is a suitable tool for clinical use, including those with cardiac and non-cardiac co-morbidities and second that abnormalities of PWA are independent predictors of the presence and severity of CAD. Data have been derived from a prospective, protocol-driven, multi-centre cohort of 550 patients recruited from 2006-8. Results suggest that PWA has a useful clinical role in stratifying the risk of coronary disease. PWA variables were independent of conventional blood pressure measurement and superior to baseline risk factors, biomarkers and other non-invasive tests

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 167)

    Get PDF
    This bibliography lists 235 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1977

    Intracoronary ultrasound

    Get PDF
    Knowledge of the characteristics of the atherosclerotic plaque (eccentricity, composition, effect of initial dilatation or ablation) and of the flow modifications induced by a coronary stenosis would establish more precisely the severity of the lesion under evaluation, improve the planning and guidance of therapeutic interventions, and facilitate the detection of subsequent complications. The miniaturization of the ultrasound catheters a11d the de
    corecore