1,891 research outputs found

    An Investigation of How Wavelet Transform can Affect the Correlation Performance of Biomedical Signals : The Correlation of EEG and HRV Frequency Bands in the frontal lobe of the brain

    Get PDF
    © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedRecently, the correlation between biomedical signals, such as electroencephalograms (EEG) and electrocardiograms (ECG) time series signals, has been analysed using the Pearson Correlation method. Although Wavelet Transformations (WT) have been performed on time series data including EEG and ECG signals, so far the correlation between WT signals has not been analysed. This research shows the correlation between the EEG and HRV, with and without WT signals. Our results suggest electrical activity in the frontal lobe of the brain is best correlated with the HRV.We assume this is because the frontal lobe is related to higher mental functions of the cerebral cortex and responsible for muscle movements of the body. Our results indicate a positive correlation between Delta, Alpha and Beta frequencies of EEG at both low frequency (LF) and high frequency (HF) of HRV. This finding is independent of both participants and brain hemisphere.Final Published versio

    Computer Aided ECG Analysis - State of the Art and Upcoming Challenges

    Full text link
    In this paper we present current achievements in computer aided ECG analysis and their applicability in real world medical diagnosis process. Most of the current work is covering problems of removing noise, detecting heartbeats and rhythm-based analysis. There are some advancements in particular ECG segments detection and beat classifications but with limited evaluations and without clinical approvals. This paper presents state of the art advancements in those areas till present day. Besides this short computer science and signal processing literature review, paper covers future challenges regarding the ECG signal morphology analysis deriving from the medical literature review. Paper is concluded with identified gaps in current advancements and testing, upcoming challenges for future research and a bullseye test is suggested for morphology analysis evaluation.Comment: 7 pages, 3 figures, IEEE EUROCON 2013 International conference on computer as a tool, 1-4 July 2013, Zagreb, Croati

    Association between attention and heart rate fluctuations in pathological worriers

    Get PDF
    Recent data suggests that several psychopathological conditions are associated with alterations in the variability of behavioral and physiological responses. Pathological worry, defined as the cognitive representation of a potential threat, has been associated with reduced variability of heart beat oscillations (i.e., decreased heart rate variability; HRV) and lapses of attention indexed by reaction times (RTs). Clinical populations with attention deficit show RTs oscillation around 0.05 and 0.01 Hz when performing a sustained attention task. We tested the hypothesis that people who are prone to worry do it in a predictable oscillating pattern revealed through recurrent lapses in attention and concomitant oscillating HRV. Sixty healthy young adults (50% women) were recruited: 30 exceeded the clinical cut-off on the Penn State Worry Questionnaire (PSWQ; High-Worry, HW); the remaining 30 constituted the Low-Worry (LW) group. After a diagnostic assessment, participants performed two 15-min sustained attention tasks, interspersed by a standardized worry-induction procedure. RTs, HRV and moods were assessed. The analyses of the frequency spectrum showed that the HW group presents a significant higher and constant peak of RTs oscillation around 0.01 Hz (period 100 s) after the induction of worry, in comparison with their baseline and with the LW group that was not responsive to the induction procedure. Physiologically, the induction significantly reduced high-frequency HRV and such reduction was associated with levels of self-reported worry. Results are coherent with the oscillatory nature of the default mode network (DMN) and further confirm an association between cognitive rigidity and autonomic nervous system inflexibility

    Detection of synchronization from univariate data using wavelet transform

    Full text link
    A method is proposed for detecting from univariate data the presence of synchronization of a self-sustained oscillator by external driving with varying frequency. The method is based on the analysis of difference between the oscillator instantaneous phases calculated using continuous wavelet transform at time moments shifted by a certain constant value relative to each other. We apply our method to a driven asymmetric van der Pol oscillator, experimental data from a driven electronic oscillator with delayed feedback and human heartbeat time series. In the latest case, the analysis of the heart rate variability data reveals synchronous regimes between the respiration and slow oscillations in blood pressure.Comment: 10 pages, 9 figure

    Modeling the pulse signal by wave-shape function and analyzing by synchrosqueezing transform

    Full text link
    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, {and} based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features
    • …
    corecore