1,015 research outputs found

    Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples

    Full text link
    In this paper, we consider the problem of recovering a compactly supported multivariate function from a collection of pointwise samples of its Fourier transform taken nonuniformly. We do this by using the concept of weighted Fourier frames. A seminal result of Beurling shows that sample points give rise to a classical Fourier frame provided they are relatively separated and of sufficient density. However, this result does not allow for arbitrary clustering of sample points, as is often the case in practice. Whilst keeping the density condition sharp and dimension independent, our first result removes the separation condition and shows that density alone suffices. However, this result does not lead to estimates for the frame bounds. A known result of Groechenig provides explicit estimates, but only subject to a density condition that deteriorates linearly with dimension. In our second result we improve these bounds by reducing the dimension dependence. In particular, we provide explicit frame bounds which are dimensionless for functions having compact support contained in a sphere. Next, we demonstrate how our two main results give new insight into a reconstruction algorithm---based on the existing generalized sampling framework---that allows for stable and quasi-optimal reconstruction in any particular basis from a finite collection of samples. Finally, we construct sufficiently dense sampling schemes that are often used in practice---jittered, radial and spiral sampling schemes---and provide several examples illustrating the effectiveness of our approach when tested on these schemes

    Fractal homogenization of multiscale interface problems

    Get PDF
    Inspired by continuum mechanical contact problems with geological fault networks, we consider elliptic second order differential equations with jump conditions on a sequence of multiscale networks of interfaces with a finite number of non-separating scales. Our aim is to derive and analyze a description of the asymptotic limit of infinitely many scales in order to quantify the effect of resolving the network only up to some finite number of interfaces and to consider all further effects as homogeneous. As classical homogenization techniques are not suited for this kind of geometrical setting, we suggest a new concept, called fractal homogenization, to derive and analyze an asymptotic limit problem from a corresponding sequence of finite-scale interface problems. We provide an intuitive characterization of the corresponding fractal solution space in terms of generalized jumps and gradients together with continuous embeddings into L2 and Hs, s<1/2. We show existence and uniqueness of the solution of the asymptotic limit problem and exponential convergence of the approximating finite-scale solutions. Computational experiments involving a related numerical homogenization technique illustrate our theoretical findings

    A dissipative time reversal technique for photo-acoustic tomography in a cavity

    Full text link
    We consider the inverse source problem arising in thermo- and photo-acoustic tomography. It consists in reconstructing the initial pressure from the boundary measurements of the acoustic wave. Our goal is to extend versatile time reversal techniques to the case of perfectly reflecting boundary of the domain. Standard time reversal works only if the solution of the direct problem decays in time, which does not happen in the setup we consider. We thus propose a novel time reversal technique with a non-standard boundary condition. The error induced by this time reversal technique satisfies the wave equation with a dissipative boundary condition and, therefore, decays in time. For larger measurement times, this method yields a close approximation; for smaller times, the first approximation can be iteratively refined, resulting in a convergent Neumann series for the approximation
    • …
    corecore