16,675 research outputs found

    Classical sampling theorems in the context of multirate and polyphase digital filter bank structures

    Get PDF
    The recovery of a signal from so-called generalized samples is a problem of designing appropriate linear filters called reconstruction (or synthesis) filters. This relationship is reviewed and explored. Novel theorems for the subsampling of sequences are derived by direct use of the digital-filter-bank framework. These results are related to the theory of perfect reconstruction in maximally decimated digital-filter-bank systems. One of the theorems pertains to the subsampling of a sequence and its first few differences and its subsequent stable reconstruction at finite cost with no error. The reconstruction filters turn out to be multiplierless and of the FIR (finite impulse response) type. These ideas are extended to the case of two-dimensional signals by use of a Kronecker formalism. The subsampling of bandlimited sequences is also considered. A sequence x(n ) with a Fourier transform vanishes for |ω|&ges;Lπ/M, where L and M are integers with L<M, can in principle be represented by reducing the data rate by the amount M/L. The digital polyphase framework is used as a convenient tool for the derivation as well as mechanization of the sampling theorem

    Real-time Digital Simulation of Guitar Amplifiers as Audio Effects

    Get PDF
    Práce se zabývá číslicovou simulací kytarových zesilovačů, jakož to nelineárních analogových hudebních efektů, v reálném čase. Hlavním cílem práce je návrh algoritmů, které by umožnily simulaci složitých systémů v reálném čase. Tyto algoritmy jsou prevážně založeny na automatizované DK-metodě a aproximaci nelineárních funkcí. Kvalita navržených algoritmů je stanovana pomocí poslechových testů.The work deals with the real-time digital simulation of guitar amplifiers considered as nonlinear analog audio effects. The main aim is to design algorithms which are able to simulate complex systems in real-time. These algorithms are mainly based on the automated DK-method and the approximation of nonlinear functions. Quality of the designed algorithms is evaluated using listening tests.

    Fast recursive filters for simulating nonlinear dynamic systems

    Get PDF
    A fast and accurate computational scheme for simulating nonlinear dynamic systems is presented. The scheme assumes that the system can be represented by a combination of components of only two different types: first-order low-pass filters and static nonlinearities. The parameters of these filters and nonlinearities may depend on system variables, and the topology of the system may be complex, including feedback. Several examples taken from neuroscience are given: phototransduction, photopigment bleaching, and spike generation according to the Hodgkin-Huxley equations. The scheme uses two slightly different forms of autoregressive filters, with an implicit delay of zero for feedforward control and an implicit delay of half a sample distance for feedback control. On a fairly complex model of the macaque retinal horizontal cell it computes, for a given level of accuracy, 1-2 orders of magnitude faster than 4th-order Runge-Kutta. The computational scheme has minimal memory requirements, and is also suited for computation on a stream processor, such as a GPU (Graphical Processing Unit).Comment: 20 pages, 8 figures, 1 table. A comparison with 4th-order Runge-Kutta integration shows that the new algorithm is 1-2 orders of magnitude faster. The paper is in press now at Neural Computatio

    Fractional Spectral Moments for Digital Simulation of Multivariate Wind Velocity Fields

    Full text link
    In this paper, a method for the digital simulation of wind velocity fields by Fractional Spectral Moment function is proposed. It is shown that by constructing a digital filter whose coefficients are the fractional spectral moments, it is possible to simulate samples of the target process as superposition of Riesz fractional derivatives of a Gaussian white noise processes. The key of this simulation technique is the generalized Taylor expansion proposed by the authors. The method is extended to multivariate processes and practical issues on the implementation of the method are reported.Comment: 12 pages, 2 figure
    corecore