2,810 research outputs found

    Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension

    Full text link
    In binary images, the distance transformation (DT) and the geometrical skeleton extraction are classic tools for shape analysis. In this paper, we present time optimal algorithms to solve the reverse Euclidean distance transformation and the reversible medial axis extraction problems for dd-dimensional images. We also present a dd-dimensional medial axis filtering process that allows us to control the quality of the reconstructed shape

    Texture descriptor combining fractal dimension and artificial crawlers

    Get PDF
    Texture is an important visual attribute used to describe images. There are many methods available for texture analysis. However, they do not capture the details richness of the image surface. In this paper, we propose a new method to describe textures using the artificial crawler model. This model assumes that each agent can interact with the environment and each other. Since this swarm system alone does not achieve a good discrimination, we developed a new method to increase the discriminatory power of artificial crawlers, together with the fractal dimension theory. Here, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. We validate our method on two texture datasets and the experimental results reveal that our method leads to highly discriminative textural features. The results indicate that our method can be used in different texture applications.Comment: 12 pages 9 figures. Paper in press: Physica A: Statistical Mechanics and its Application

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Graph Analytics Methods In Feature Engineering

    Get PDF
    High-dimensional data sets can be difficult to visualize and analyze, while data in low-dimensional space tend to be more accessible. In order to aid visualization of the underlying structure of a dataset, the dimension of the dataset is reduced. The simplest approach to accomplish this task of dimensionality reduction is by a random projection of the data. Even though this approach allows some degree of visualization of the underlying structure, it is possible to lose more interesting underlying structure within the data. In order to address this concern, various supervised and unsupervised linear dimensionality reduction algorithms have been designed, such as Principal Component Analysis and Linear Discriminant Analysis. These methods can be powerful, but often miss important non-linear structure in the data. In this thesis, manifold learning approaches to dimensionality reduction are developed. These approaches combine both linear and non-linear methods of dimension reduction
    • …
    corecore