4,959 research outputs found

    Modelling dynamic stochastic user equilibrium for urban road networks

    Get PDF
    In this study a dynamic assignment model is developed which estimates travellers' route and departure time choices and the resulting time varying traffic patterns during the morning peak. The distinctive feature of the model is that it does not restrict the geometry of the network to specific forms. The proposed framework of analysis consists of a travel time model, a demand model and a demand adjustment mechanism. Two travel time models are proposed. The first is based on elementary relationships from traffic flow theory and provides the framework for a macroscopic simulation model which calculates the time varying flow patterns and link travel times given the time dependent departure rate distributions; the second is based on queueing theory and models roads as bottlenecks through which traffic flow is either uncongested or fixed at a capacity independent of traffic density. The demand model is based on the utility maximisation decision rule and defines the time dependent departure rates associated with each reasonable route connecting, the O-D pairs of the network, given the total utility associated with each combination of departure time and route. Travellers' choices are assumed to result from the trade-off between travel time and schedule delay and each individual is assumed to first choose a departure time t, and then select a reasonable route, conditional on the choice of t. The demand model has therefore the form of a nested logit. The demand adjustment mechanism is derived from a Markovian model, and describes the day-to-day evolution of the departure rate distributions. Travellers are assumed to modify their trip choice decisions based on the information they acquire from recent trips. The demand adjustment mechanism is used in order to find the equilibrium state of the system, defined as the state at which travellers believe that they cannot increase their utility of travel by unilaterally changing route or departure time. The model outputs exhibit the characteristics of real world traffic patterns observed during the peak, i. e., time varying flow patterns and travel times which result from time varying departure rates from the origins. It is shown that increasing the work start time flexibility results in a spread of the departure rate distributions over a longer period and therefore reduces the level of congestion in the network. Furthermore, it was shown that increasing the total demand using the road network results in higher levels of congestion and that travellers tend to depart earlier in an attempt to compensate for the increase in travel times. Moreover, experiments using the queueing theory based travel time model have shown that increasing the capacity of a bottleneck may cause congestion to develop downstream, which in turn may result in an increase of the average travel time for certain O-D pairs. The dynamic assignment model is also applied to estimate the effects that different road pricing policies may have on trip choices and the level of congestion; the model is used to demonstrate the development of the shifting peak phenomenon. Furthermore, the effect of information availability on the traffic patterns is investigated through a number of experiments using the developed dynamic assignment model and assuming that guided drivers form a class of users characterised by lower variability of preferences with respect to route choice

    Simultaneous Workload Allocation and Capacity Dimensioning for Distributed Production Control

    Get PDF
    abstract: Capacity dimensioning in production systems is an important task within strategic and tactical production planning which impacts system cost and performance. Traditionally capacity demand at each worksystem is determined from standard operating processes and estimated production flow rates, accounting for a desired level of utilization or required throughput times. However, for distributed production control systems, the flows across multiple possible production paths are not known a priori. In this contribution, we use methods from algorithmic game-theory and traffic-modeling to predict the flows, and hence capacity demand across worksystems, based on the available production paths and desired output rates, assuming non-cooperative agents with global information. We propose an iterative algorithm that converges simultaneously to a feasible capacity distribution and a flow distribution over multiple paths that satisfies Wardrop's first principle. We demonstrate our method on models of real-world production networks

    An assigment free data driven approach to the dynamic origin destination matrix estimation problem

    Get PDF
    Document de recerca desenvolupat dins del Doctorat Industrial 2017-DI-041Dynamic traffic models require dynamic inputs, and one of the main inputs are the Dynamic Origin-Destinations (OD) matrices describing the variability over time of the trip patterns across the network. The Dynamic OD Matrix Estimation (DODME) is a hard problem since no direct full observations are available, and therefore one should resort to indirect estimation approaches. Among the most efficient approaches, the one that formulates the problem in terms of a bilevel optimization problem has been widely used. This formulation solves at the upper level a nonlinear optimization that minimizes some distance measures between observed and estimated link flow counts at certain counting stations located in a subset of links in the network, and at the lower level a traffic assignment that estimates these link flow counts assigning the current estimated matrix. The variants of this formulation differ in the analytical approaches that estimate the link flows in terms of the assignment and their time dependencies. Since these estimations are based on a traffic assignment at the lower level, these analytical approaches, although numerically efficient, imply a high computational cost. The advent of ICT applications has made available new sets of traffic related measurements enabling new approaches; under certain conditions, the data collected on used paths could be interpreted as an empirical assignment observed de facto. This allows extracting empirically the same information provided by an assignment that is used in the analytical approaches. This research report explores how to extract such information from the recorded data, proposes a new optimization model to solve the DODME problem, and computational results on its performance.Preprin

    Trip distribution modelling using neural network

    Get PDF
    Trip distribution is the second important stage in the 4-step travel demand forecasting. The purpose of the trip distribution forecasting is to estimates the trip linkages or interactions between traffic zones for trip makers. The problem of trip distribution is of non-linear nature and Neural Networks (NN) are well suited for addressing the non-linear problems. This fact supports the use of artificial neural networks for trip distribution problem. In this study a new approach based on the Generalised Regression Neural Network (GRNN) has been researched to estimate the distribution of the journey to work trips. The advantage of GRNN models among other feedforward or feedback neural network techniques is the simplicity and practicality of these models. As a case study the model was applied to the journey to work trips in City of Mandurah in WA. Keeping in view the gravity model, the GRNN model structure has been developed. The inputs for the GRNN model are kept same as that of the gravity model. Accordingly the inputs to the GRNN model is in the form of a vector consist of land use data for the origin and destination zones and the corresponding distance between the zones. The previous studies generally used trip generations and attractions as the inputs to the NN model while this study tried to estimate the trip distribution based on the land uses. For the purpose of comparison, gravity model was used as the traditional method of trip distribution. The modelling analysis indicated that the GRNN modelling could provide slightly better results than the Gravity model with higher correlation coefficient and less root mean square error and could be improved if the size of the training data set is increased

    Congestion Prediction in Internet of Things Network using Temporal Convolutional Network A Centralized Approach

    Get PDF
    The unprecedented ballooning of network traffic flow, specifically, Internet of Things (IoT) network traffic, has big stressed of congestion on todays Internet. Non-recurring network traffic flow may be caused by temporary disruptions, such as packet drop, poor quality of services, delay, etc. Hence, the network traffic flow estimation is important in IoT networks to predict congestion. As the data in IoT networks is collected from a large number of diversified devices which have unlike format of data and also manifest complex correlations, so the generated data is heterogeneous and nonlinear in nature. Conventional machine learning approaches unable to deal with nonlinear datasets and suffer from misclassification of real network traffic due to overfitting. Therefore, it also becomes really hard for conventional machine learning tools like shallow neural networks to predict the congestion accurately. Accuracy of congestion prediction algorithms play an important role to control the congestion by regulating the send rate of the source. Various deeplearning methods (LSTM, CNN, GRU, etc.) are considered in designing network traffic flow predictors, which have shown promising results. In this work, we propose a novel congestion predictor for IoT, that uses Temporal Convolutional Network (TCN). Furthermore, we use Taguchi method to optimize the TCN model that reduces the number of runs of the experiments. We compare TCN with other four deep learning-based models concerning Mean Absolute Error (MAE) and Mean Relative Error (MRE). The experimental results show that TCN based deep learning framework achieves improved performance with 95.52% accuracy in predicting network congestion. Further, we design the Home IoT network testbed to capture the real network traffic flows as no standard dataset is available

    Private operators and time-of-day tolling on a congested road network

    Get PDF
    Private-sector involvement in the construction and operation of roads is growing around the world and private toll roads are seen as a useful tool in the battle against congestion. Yet serious concerns remain about exercise of monopoly power if private operators can set tolls freely. A number of theoretical studies have investigated private toll-road pricing strategies, and compared them with first-best and second-best public tolls. But most of the analyses have employed simple road networks and/or used static models that do not capture the temporal dimension of congestion or describe the impacts of tolling schemes that vary by time of day. This paper takes a fresh look at private toll road pricing using METROPOLIS: a dynamic traffic simulator that treats endogenously choices of transport mode, departure time and route at the level of individual travellers. Simulations are performed for the peak-period morning commute on a stylized urban road network with jobs concentrated towards the centre of the city. Tolling scenarios are defined in terms of what is tolled (traffic lanes, whole links, or toll rings) and how tolls are varied over time. Three administration regimes are compared. The first two are the standard polar cases: social surplus maximization by a public-sector operator, and unconstrained profit maximization by a private-sector operator. The third regime entails varying tolls in steps to eliminate queuing on the tolled links. It is a form of third-best tolling that could be implemented either by a public operator or by the private sector under quality-of-service regulation. Amongst the results it is found that the no-queue tolling regime performs favourably compared to public step tolling, and invariably better than private tolling. Another provisional finding is that a private operator has less incentive than does a public operator to implement time-of-day congestion pricing.
    • 

    corecore