34,275 research outputs found

    Characterisation of Al corrosion and its impact on the mechanical performance of composite cement wasteforms by the acoustic emission technique

    Get PDF
    In this study acoustic emission (AE) non-destructive method was used to evaluate the mechanical performance of cementitious wasteforms with encapsulated Al waste. AE waves generated as a result of Al corrosion in small-size blast furnace slag/ordinary Portland cement wasteforms were recorded and analysed. The basic principles of the conventional parameter-based AE approach and signal-based analysis were combined to establish a relationship between recorded AE signals and different interactions between the Al and the encapsulating cement matrix. The AE technique was shown as a potential and valuable tool for a new area of application related to monitoring and inspection of the mechanical stability of cementitious wasteforms with encapsulated metallic wastes such as Al

    Electrochemical Noise Measurement Technique in Corrosion Research

    Get PDF
    Electrochemical noise measurement is one of the novel techniques currently being used in corrosion monitoring. Two major methods of analysis in use are the Fast Fourier Transform (FFT) and the Maximum Entropy Method (MEM). This paper reviews the techniques fundamental background – types of noise, physical data; description, classification and characteristics; mathematical background of random data and spectral analysis. Recent progress made in its application to corrosion monitoring and other electrochemical reaction phenomena are also examined

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Ultrasonic probing of the elastic properties of PMMA bead packings and their rearrangement during pressure sintering

    Full text link
    Ultrasound transmission in PMMA spherical bead packings is investigated during the sintering process under stress. Velocity and amplitude measurements of coherent longitudinal waves are performed to monitor the evolution of the elastic properties of the solid frame from noncohesive packing to sintered granular material. Comparison between the experimental velocity data and the prediction by a contact model [Digby, J. Appl. Mech. 48, 803, (1981)] reveals the crucial role of the bonding effect on the mechanical behavior of granular compacts. By using the correlation technique of acoustic speckles, we also observe the important rearrangements in granular packings before the onset of sintering.Comment: to be published in Powder Technology, 8 pages, 8 figure

    Method Of Applying Acoustic Energy Effective To Alter Transport Or Cell Viability

    Get PDF
    A method for reversibly, or irreversibly, altering the permeability of cells, tissues or other biological barriers, to molecules to be transported into or through these materials, through the application of acoustic energy, is enhanced by applying the ultrasound in combination with devices for monitoring and/or implementing feedback controls. The acoustic energy is applied directly or indirectly to the cells or tissue whose permeability is to be altered, at a frequency and intensity appropriate to alter the permeability to achieve the desired effect, such as the transport of endogenous or exogenous molecules and/or fluid, for drug delivery, measurement of analyte, removal of fluid, alteration of cell or tissue viability or alteration of structure of materials such as kidney or gall bladder stones. In the preferred embodiment, the method includes measuring the strength of the acoustic field applied to the cell or tissue at the applied frequency or other frequencies, and using the acoustic measurement to modify continued or subsequent application of acoustic energy to the cell or tissue. In another preferred embodiment, the method further includes simultaneously, previously, or subsequently exposing the cell or tissue to the chemical or biological agent to be transported into or across the cell or tissue. In another preferred application, the method includes removing biological fluid or molecules from the cells or tissue simultaneously, previously or subsequently to the application of acoustic energy and, optionally, assaying the biological fluid or molecules.Georgia Tech Research Corporatio

    Photoelastic Stress Analysis

    Get PDF
    corecore