7 research outputs found

    New Z-cyclic triplewhist frames and triplewhist tournament designs

    Get PDF
    AbstractTriplewhist tournaments are a specialization of whist tournament designs. The spectrum for triplewhist tournaments on v players is nearly complete. It is now known that triplewhist designs do not exist for v=5,9,12,13 and do exist for all other v≡0,1(mod4) except, possibly, v=17. Much less is known concerning the existence of Z-cyclic triplewhist tournaments. Indeed, there are many open questions related to the existence of Z-cyclic whist designs. A (triple)whist design is said to be Z-cyclic if the players are elements in Zm∪A where m=v, A=∅ when v≡1(mod4) and m=v-1, A={∞} when v≡0(mod4) and it is further required that the rounds also be cyclic in the sense that the rounds can be labelled, say, R1,R2,… in such a way that Rj+1 is obtained by adding +1(modm) to every element in Rj. The production of Z-cyclic triplewhist designs is particularly challenging when m is divisible by any of 5,9,11,13,17. Here we introduce several new triplewhist frames and use them to construct new infinite families of triplewhist designs, many for the case of m being divisible by at least one of 5,9,11,13,17

    Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh(v)

    Get PDF
    AbstractA necessary condition for the existence of a triplewhist tournament TWh(v) is v≡0 or 1(mod4); this condition is known to be sufficient except for v=5,9,12,13 and possibly v=17,57,65,69,77,85,93,117,129,153. In this paper, we remove all the possible exceptions except v=17. This provides an almost complete solution for the more than 100 year old problem on the existence of triplewhist tournaments TWh(v). By applying frame constructions and product constructions, several new infinite classes of Z-cyclic triplewhist tournaments are also obtained. A couple of new cyclic difference matrices are also obtained

    One frame and several new infinite families of Z-cyclic whist designs

    Get PDF
    AbstractIn 2001, Ge and Zhu published a frame construction which they utilized to construct a large class of Z-cyclic triplewhist designs. In this study the power and elegance of their methodology is illustrated in a rather dramatic fashion. Primarily due to the discovery of a single new frame it is possible to combine their techniques with the product theorems of Anderson, Finizio and Leonard along with a few new specific designs to obtain several new infinite classes of Z-cyclic whist designs. A sampling of the new results contained herein is as follows: (1) Z-cyclic Wh(33p+1), p a prime of the form 4t+1; (2) Z-cyclic Wh(32n+1s+1), for all n⩾1, s=5,13,17; (3) Z-cyclic Wh(32ns+1), for all n⩾1, s=35,55,91; (4) Z-cyclic Wh(32n+1s), for all n⩾1, and for all s for which there exist a Z-cyclic Wh(3s) and a homogeneous (s,4,1)-DM; and (5) Z-cyclic Wh(32ns) for all n⩾1, s=5,13. Many other results are also obtained. In particular, there exist Z-cyclic Wh(33v+1) where v is any number for which Ge and Zhu obtained Z-cyclic TWh(3v+1)

    Part I:

    Get PDF

    DigitalCommons@University of Rhode Island Statistics Feb-Jun 2006

    Get PDF
    Statistics on the total number of full text downloads from the DigitalCommons@University of Rhode Island institutional repository for February through June 2006 [earlier data not available]. Data are provided monthly on the number of full text downloads by collection and document, and on the number of referrals by domain and country. Dissertations are included in the statistics. Digital Commons statistics are COUNTER-compliant, with downloads from robots and automated processes filtered out
    corecore