85,281 research outputs found

    Weak signal identification with semantic web mining

    Get PDF
    We investigate an automated identification of weak signals according to Ansoff to improve strategic planning and technological forecasting. Literature shows that weak signals can be found in the organization's environment and that they appear in different contexts. We use internet information to represent organization's environment and we select these websites that are related to a given hypothesis. In contrast to related research, a methodology is provided that uses latent semantic indexing (LSI) for the identification of weak signals. This improves existing knowledge based approaches because LSI considers the aspects of meaning and thus, it is able to identify similar textual patterns in different contexts. A new weak signal maximization approach is introduced that replaces the commonly used prediction modeling approach in LSI. It enables to calculate the largest number of relevant weak signals represented by singular value decomposition (SVD) dimensions. A case study identifies and analyses weak signals to predict trends in the field of on-site medical oxygen production. This supports the planning of research and development (R&D) for a medical oxygen supplier. As a result, it is shown that the proposed methodology enables organizations to identify weak signals from the internet for a given hypothesis. This helps strategic planners to react ahead of time

    Horizon Report 2009

    Get PDF
    El informe anual Horizon investiga, identifica y clasifica las tecnologías emergentes que los expertos que lo elaboran prevén tendrán un impacto en la enseñanza aprendizaje, la investigación y la producción creativa en el contexto educativo de la enseñanza superior. También estudia las tendencias clave que permiten prever el uso que se hará de las mismas y los retos que ellos suponen para las aulas. Cada edición identifica seis tecnologías o prácticas. Dos cuyo uso se prevé emergerá en un futuro inmediato (un año o menos) dos que emergerán a medio plazo (en dos o tres años) y dos previstas a más largo plazo (5 años)

    When the Social Meets the Semantic: Social Semantic Web or Web 2.5

    Full text link
    The social trend is progressively becoming the key feature of current Web understanding (Web 2.0). This trend appears irrepressible as millions of users, directly or indirectly connected through social networks, are able to share and exchange any kind of content, information, feeling or experience. Social interactions radically changed the user approach. Furthermore, the socialization of content around social objects provides new unexplored commercial marketplaces and business opportunities. On the other hand, the progressive evolution of the web towards the Semantic Web (or Web 3.0) provides a formal representation of knowledge based on the meaning of data. When the social meets semantics, the social intelligence can be formed in the context of a semantic environment in which user and community profiles as well as any kind of interaction is semantically represented (Semantic Social Web). This paper first provides a conceptual analysis of the second and third version of the Web model. That discussion is aimed at the definition of a middle concept (Web 2.5) resulting in the convergence and integration of key features from the current and next generation Web. The Semantic Social Web (Web 2.5) has a clear theoretical meaning, understood as the bridge between the overused Web 2.0 and the not yet mature Semantic Web (Web 3.0).Pileggi, SF.; Fernández Llatas, C.; Traver Salcedo, V. (2012). When the Social Meets the Semantic: Social Semantic Web or Web 2.5. Future Internet. 4(3):852-854. doi:10.3390/fi4030852S85285443Chi, E. H. (2008). The Social Web: Research and Opportunities. Computer, 41(9), 88-91. doi:10.1109/mc.2008.401Bulterman, D. C. A. (2001). SMIL 2.0 part 1: overview, concepts, and structure. IEEE Multimedia, 8(4), 82-88. doi:10.1109/93.959106Boll, S. (2007). MultiTube--Where Web 2.0 and Multimedia Could Meet. IEEE Multimedia, 14(1), 9-13. doi:10.1109/mmul.2007.17Fraternali, P., Rossi, G., & Sánchez-Figueroa, F. (2010). Rich Internet Applications. IEEE Internet Computing, 14(3), 9-12. doi:10.1109/mic.2010.76Lassila, O., & Hendler, J. (2007). Embracing «Web 3.0». IEEE Internet Computing, 11(3), 90-93. doi:10.1109/mic.2007.52Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A. (2009). Cloud Computing: Distributed Internet Computing for IT and Scientific Research. IEEE Internet Computing, 13(5), 10-13. doi:10.1109/mic.2009.103Mangione-Smith, W. H. (1998). Mobile computing and smart spaces. IEEE Concurrency, 6(4), 5-7. doi:10.1109/4434.736391Greaves, M. (2007). Semantic Web 2.0. IEEE Intelligent Systems, 22(2), 94-96. doi:10.1109/mis.2007.40Bojars, U., Breslin, J. G., Peristeras, V., Tummarello, G., & Decker, S. (2008). Interlinking the Social Web with Semantics. IEEE Intelligent Systems, 23(3), 29-40. doi:10.1109/mis.2008.50Definition of Web 2.0http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.htmlZhang, D., Guo, B., & Yu, Z. (2011). The Emergence of Social and Community Intelligence. Computer, 44(7), 21-28. doi:10.1109/mc.2011.65Pentlan, A. (2005). Socially aware, computation and communication. Computer, 38(3), 33-40. doi:10.1109/mc.2005.104Staab, S., Domingos, P., Mika, P., Golbeck, J., Li Ding, Finin, T., … Vallacher, R. R. (2005). Social Networks Applied. IEEE Intelligent Systems, 20(1), 80-93. doi:10.1109/mis.2005.16The Semantic Webhttp://www.scientificamerican.com/article.cfm?id=the-semantic-webDecker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., … Horrocks, I. (2000). The Semantic Web: the roles of XML and RDF. IEEE Internet Computing, 4(5), 63-73. doi:10.1109/4236.877487OWL Web Ontology Language Overviewhttp://www.w3.org/TR/owl-features/Vetere, G., & Lenzerini, M. (2005). Models for semantic interoperability in service-oriented architectures. IBM Systems Journal, 44(4), 887-903. doi:10.1147/sj.444.0887Fensel, D., & Musen, M. A. (2001). The semantic web: a brain for humankind. IEEE Intelligent Systems, 16(2), 24-25. doi:10.1109/mis.2001.920595Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The Semantic Web Revisited. IEEE Intelligent Systems, 21(3), 96-101. doi:10.1109/mis.2006.62Dodds, P. S., & Danforth, C. M. (2009). Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents. Journal of Happiness Studies, 11(4), 441-456. doi:10.1007/s10902-009-9150-9Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011Thelwall, M., Buckley, K., & Paltoglou, G. (2011). Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 63(1), 163-173. doi:10.1002/asi.21662Blogmeterhttp://www.blogmeter.it/Christakis, N. A., & Fowler, J. H. (2010). Social Network Sensors for Early Detection of Contagious Outbreaks. PLoS ONE, 5(9), e12948. doi:10.1371/journal.pone.0012948Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169-2188. doi:10.1002/asi.21149Bernal, P. A. (2010). Web 2.5: The Symbiotic Web. International Review of Law, Computers & Technology, 24(1), 25-37. doi:10.1080/13600860903570145Mikroyannidis, A. (2007). Toward a Social Semantic Web. Computer, 40(11), 113-115. doi:10.1109/mc.2007.405Jung, J. J. (2012). Computational reputation model based on selecting consensus choices: An empirical study on semantic wiki platform. Expert Systems with Applications, 39(10), 9002-9007. doi:10.1016/j.eswa.2012.02.03

    Towards Web-based representation and processing of health information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is great concern within health surveillance, on how to grapple with environmental degradation, rapid urbanization, population mobility and growth. The Internet has emerged as an efficient way to share health information, enabling users to access and understand data at their fingertips. Increasingly complex problems in the health field require increasingly sophisticated computer software, distributed computing power, and standardized data sharing. To address this need, Web-based mapping is now emerging as an important tool to enable health practitioners, policy makers, and the public to understand spatial health risks, population health trends and vulnerabilities. Today several web-based health applications generate dynamic maps; however, for people to fully interpret the maps they need data source description and the method used in the data analysis or statistical modeling. For the representation of health information through Web-mapping applications, there still lacks a standard format to accommodate all fixed (such as location) and variable (such as age, gender, health outcome, etc) indicators in the representation of health information. Furthermore, net-centric computing has not been adequately applied to support flexible health data processing and mapping online.</p> <p>Results</p> <p>The authors of this study designed a HEalth Representation XML (HERXML) schema that consists of the semantic (e.g., health activity description, the data sources description, the statistical methodology used for analysis), geometric, and cartographical representations of health data. A case study has been carried on the development of web application and services within the Canadian Geospatial Data Infrastructure (CGDI) framework for community health programs of the New Brunswick Lung Association. This study facilitated the online processing, mapping and sharing of health information, with the use of HERXML and Open Geospatial Consortium (OGC) services. It brought a new solution in better health data representation and initial exploration of the Web-based processing of health information.</p> <p>Conclusion</p> <p>The designed HERXML has been proven to be an appropriate solution in supporting the Web representation of health information. It can be used by health practitioners, policy makers, and the public in disease etiology, health planning, health resource management, health promotion and health education. The utilization of Web-based processing services in this study provides a flexible way for users to select and use certain processing functions for health data processing and mapping via the Web. This research provides easy access to geospatial and health data in understanding the trends of diseases, and promotes the growth and enrichment of the CGDI in the public health sector.</p

    Interests Diffusion in Social Networks

    Full text link
    Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.Comment: 30 pages 13 figs 4 table

    The Hidden Web, XML and Semantic Web: A Scientific Data Management Perspective

    Get PDF
    The World Wide Web no longer consists just of HTML pages. Our work sheds light on a number of trends on the Internet that go beyond simple Web pages. The hidden Web provides a wealth of data in semi-structured form, accessible through Web forms and Web services. These services, as well as numerous other applications on the Web, commonly use XML, the eXtensible Markup Language. XML has become the lingua franca of the Internet that allows customized markups to be defined for specific domains. On top of XML, the Semantic Web grows as a common structured data source. In this work, we first explain each of these developments in detail. Using real-world examples from scientific domains of great interest today, we then demonstrate how these new developments can assist the managing, harvesting, and organization of data on the Web. On the way, we also illustrate the current research avenues in these domains. We believe that this effort would help bridge multiple database tracks, thereby attracting researchers with a view to extend database technology.Comment: EDBT - Tutorial (2011
    corecore