15,762 research outputs found

    Black hole evolution with the BSSN system by pseudo-spectral methods

    Get PDF
    We present a new pseudo-spectral code for the simulation of evolution systems that are second order in space. We test this code by evolving a non-linear scalar wave equation. These non-linear waves can be stably evolved using very simple constant or radiative boundary conditions, which we show to be well-posed in the scalar wave case. The main motivation for this work, however, is to evolve black holes for the first time with the BSSN system by means of a spectral method. We use our new code to simulate the evolution of a single black hole using all applicable methods that are usually employed when the BSSN system is used together with finite differencing methods. In particular, we use black hole excision and test standard radiative and also constant outer boundary conditions. Furthermore, we study different gauge choices such as 1+log1+\log and constant densitized lapse. We find that these methods in principle do work also with our spectral method. However, our simulations fail after about 100M100M due to unstable exponentially growing modes. The reason for this failure may be that we evolve the black hole on a full grid without imposing any symmetries. Such full grid instabilities have also been observed when finite differencing methods are used to evolve excised black holes with the BSSN system.Comment: 10 pages, 9 figure

    Hyperboloidal slices for the wave equation of Kerr-Schild metrics and numerical applications

    Full text link
    We present new results from two open source codes, using finite differencing and pseudo-spectral methods for the wave equations in (3+1) dimensions. We use a hyperboloidal transformation which allows direct access to null infinity and simplifies the control over characteristic speeds on Kerr-Schild backgrounds. We show that this method is ideal for attaching hyperboloidal slices or for adapting the numerical resolution in certain spacetime regions. As an example application, we study late-time Kerr tails of sub-dominant modes and obtain new insight into the splitting of decay rates. The involved conformal wave equation is freed of formally singular terms whose numerical evaluation might be problematically close to future null infinity.Comment: 15 pages, 12 figure

    An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry

    Full text link
    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretisation exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretisation of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem

    Reducing phase error in long numerical binary black hole evolutions with sixth order finite differencing

    Full text link
    We describe a modification of a fourth-order accurate ``moving puncture'' evolution code, where by replacing spatial fourth-order accurate differencing operators in the bulk of the grid by a specific choice of sixth-order accurate stencils we gain significant improvements in accuracy. We illustrate the performance of the modified algorithm with an equal-mass simulation covering nine orbits.Comment: 13 pages, 6 figure

    Interpolation of nonstationary high frequency spatial-temporal temperature data

    Full text link
    The Atmospheric Radiation Measurement program is a U.S. Department of Energy project that collects meteorological observations at several locations around the world in order to study how weather processes affect global climate change. As one of its initiatives, it operates a set of fixed but irregularly-spaced monitoring facilities in the Southern Great Plains region of the U.S. We describe methods for interpolating temperature records from these fixed facilities to locations at which no observations were made, which can be useful when values are required on a spatial grid. We interpolate by conditionally simulating from a fitted nonstationary Gaussian process model that accounts for the time-varying statistical characteristics of the temperatures, as well as the dependence on solar radiation. The model is fit by maximizing an approximate likelihood, and the conditional simulations result in well-calibrated confidence intervals for the predicted temperatures. We also describe methods for handling spatial-temporal jumps in the data to interpolate a slow-moving cold front.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS633 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Solving reaction-diffusion equations 10 times faster

    Get PDF
    The most popular numerical method for solving systems of reaction-diffusion equations continues to be a low order finite-difference scheme coupled with low order Euler time stepping. This paper extends previous 1D work and reports experiments that show that with high--order methods one can speed up such simulations for 2D and 3D problems by factors of 10--100. A short MATLAB code (2/3D) that can serve as a template is included.\ud \ud This work was supported by the Engineering and Physical Sciences Research Council (UK) and by the MathWorks, Inc

    PSpectRe: A Pseudo-Spectral Code for (P)reheating

    Full text link
    PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. PSpectRe is optimized for the analysis of parametric resonance in the post-inflationary universe, and provides an alternative to finite differencing codes, such as Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. Given the same number of spatial points and/or momentum modes, PSpectRe is not significantly slower than finite differencing codes, despite the need for multiple Fourier transforms at each timestep, and exhibits excellent energy conservation. Further, by computing the post-resonance equation of state, we show that in some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions. Specific applications of this code will be pursued in future work.Comment: 22 pages; source code for PSpectRe available: http://easther.physics.yale.edu v2 Typos fixed, minor improvements to wording; v3 updated as per referee comment

    Pulsar timing analysis in the presence of correlated noise

    Full text link
    Pulsar timing observations are usually analysed with least-square-fitting procedures under the assumption that the timing residuals are uncorrelated (statistically "white"). Pulsar observers are well aware that this assumption often breaks down and causes severe errors in estimating the parameters of the timing model and their uncertainties. Ad hoc methods for minimizing these errors have been developed, but we show that they are far from optimal. Compensation for temporal correlation can be done optimally if the covariance matrix of the residuals is known using a linear transformation that whitens both the residuals and the timing model. We adopt a transformation based on the Cholesky decomposition of the covariance matrix, but the transformation is not unique. We show how to estimate the covariance matrix with sufficient accuracy to optimize the pulsar timing analysis. We also show how to apply this procedure to estimate the spectrum of any time series with a steep red power-law spectrum, including those with irregular sampling and variable error bars, which are otherwise very difficult to analyse.Comment: Accepted by MNRA
    corecore