2,109 research outputs found

    ENGINEERING-ORIENTED BENCHMARKING AND APPLICATION-BASED MAGNETIC MATERIAL MODELING IN TRANSFORMER RESEARCH

    Get PDF
    The paper highlights the engineering-oriented benchmarking and application-based magnetic material modeling, as two important events in transformer research, reviews the newly extended progress in TEAM (Testing Electromagnetic Analysis Methods) Problem 21 Family, and presents the related benchmarking results

    ENGINEERING-ORIENTED BENCHMARKING AND APPLICATION-BASED MAGNETIC MATERIAL MODELING IN TRANSFORMER RESEARCH

    Get PDF
    The paper highlights the engineering-oriented benchmarking and application-based magnetic material modeling, as two important events in transformer research, reviews the newly extended progress in TEAM (Testing Electromagnetic Analysis Methods) Problem 21 Family, and presents the related benchmarking results

    A loss measurement system in a test facility for high-current superconducting cables and wires

    Get PDF
    The AC loss measurement system in the Twente test facility is operational. Preliminary results of the first loss measurements on a vacuum-welded conductor are presented. The Twente test facility is a high-current system in which superconductors can be tested up to 7 T and 25 kA. The loss measurements were done on a monolith conductor designed for TORE SUPRA, manufactured by Vacuumschmelze

    Inductive Wireless Power Transfer Charging for Electric vehicles - A Review

    Get PDF
    Considering a future scenario in which a driverless Electric Vehicle (EV) needs an automatic charging system without human intervention. In this regard, there is a requirement for a fully automatable, fast, safe, cost-effective, and reliable charging infrastructure that provides a profitable business model and fast adoption in the electrified transportation systems. These qualities can be comprehended through wireless charging systems. Wireless Power Transfer (WPT) is a futuristic technology with the advantage of flexibility, convenience, safety, and the capability of becoming fully automated. In WPT methods resonant inductive wireless charging has to gain more attention compared to other wireless power transfer methods due to high efficiency and easy maintenance. This literature presents a review of the status of Resonant Inductive Wireless Power Transfer Charging technology also highlighting the present status and its future of the wireless EV market. First, the paper delivers a brief history throw lights on wireless charging methods, highlighting the pros and cons. Then, the paper aids a comparative review of different type’s inductive pads, rails, and compensations technologies done so far. The static and dynamic charging techniques and their characteristics are also illustrated. The role and importance of power electronics and converter types used in various applications are discussed. The batteries and their management systems as well as various problems involved in WPT are also addressed. Different trades like cyber security economic effects, health and safety, foreign object detection, and the effect and impact on the distribution grid are explored. Prospects and challenges involved in wireless charging systems are also highlighting in this work. We believe that this work could help further the research and development of WPT systems.publishedVersio

    Contactless measurement of electric current using magnetic sensors

    Get PDF
    We review recent advances in magnetic sensors for DC/AC current transducers, especially novel AMR sensors and integrated fluxgates, and we make critical comparison of their properties. Most contactless electric current transducers use magnetic cores to concentrate the flux generated by the measured current and to shield the sensor against external magnetic fields. In order to achieve this, the magnetic core should be massive. We present coreless current transducers which are lightweight, linear and free of hysteresis and remanence. We also show how to suppress their weak point: crosstalk from external currents and magnetic fields

    The JET Joint Undertaking

    Get PDF

    JET - Joint European Torus EUR 8306 EN

    Get PDF

    A High Frequency Wireless Power Transfer System for Electric Vehicle Charging Using Multi-layer Non-uniform Self-resonant Coil

    Get PDF
    Wireless EV (Electric Vehicle) charging is an emerging technology with rapid development in the past decade. Compared to wired EV chargers, wireless power transfer (WPT) enables safe and unobtrusive charging for EVs. This work proposes high frequency wireless charging using a self-resonant (SR) coil at several megahertz. A multi-layer self-resonant coil structure is proposed, allowing high quality factor coils to be fabricated from layers of inexpensive copper foil and dielectric film. Additionally, the self-resonant coil utilizes its interlayer capacitance for resonance, eliminating the external compensation capacitor and shrinking the overall volume of passive component to increase the power density. Comparing to other self-resonant coils in the literature, it exhibits the characteristics of achieving high quality factor and high inductance simultaneously. Prototype coils with 200 mm radius are fabricated and tested, achieving quality factor over 450 at 3 MHz. The fabricated air-core coil structure is low-cost and lightweight, with 200 mm radius, 3 mm thickness and only 2 oz copper traces. The power stages, including GaN (Gallium Nitride) transistor based inverter and SiC (Silicon Carbide) diode based rectifier, are designed with emphasis on reduction of PCB (Printed Circuit Board) layout parasitics. Experimental tests show 95.2% dc-dc efficiency with 6.6 kW power transferred across a 100 mm coil-to-coil distance. The power density is 52.5 kW/m2, without need for any external compensation components. This work validates the concept of high frequency compact WPT system for EV. Practical shielding design is proposed for the WPT system with self-resonant coils, considering the high frequency parallel resonance effect. Complete coil pads are fabricated and assembled, incorporating the ferrite cores, PTFE (Polytetrafluoroethylene) spacer, and aluminum plate. The system is validated with shielded SR coils, achieving 92.3% DC-DC efficiency and 7.1 kW/dm3 volumetric power density. This work demonstrates the first 6.6-kW WPT system using compact self-resonant coils with practical shielding implementation. The concept of proposed multi-layer self-resonant coil is extended to other possible structures. Different multi-layer self-resonant coil structures are compared and analyzed, giving design guidelines for their capabilities at different system operating frequencies
    • …
    corecore