118 research outputs found

    Finding antipodal point grasps on irregularly shaped objects

    Get PDF
    Two-finger antipodal point grasping of arbitrarily shaped smooth 2-D and 3-D objects is considered. An object function is introduced that maps a finger contact space to the object surface. Conditions are developed to identify the feasible grasping region, F, in the finger contact space. A “grasping energy function”, E , is introduced which is proportional to the distance between two grasping points. The antipodal points correspond to critical points of E in F. Optimization and/or continuation techniques are used to find these critical points. In particular, global optimization techniques are applied to find the “maximal” or “minimal” grasp. Further, modeling techniques are introduced for representing 2-D and 3-D objects using B-spline curves and spherical product surfaces

    Searching force-closure optimal grasps of articulated 2D objects with n links

    Get PDF
    This paper proposes a method that finds a locally optimal grasp of an articulated 2D object with n links considering frictionless contacts. The surface of each link of the object is represented by a finite set of points, thus it may have any shape. The proposed approach finds, first, an initial force-closure grasp and from it starts an iterative search of a local optimum grasp. The quality measure considered in this work is the largest perturbation wrench that a grasp can resist with independence of the direction of the perturbation. The approach has been implemented and some illustrative examples are included in the article.Postprint (published version

    Grasping Points Determination Using Visual Features

    Get PDF
    This paper discusses some issues for generating point of contact using visual features. To address these issues, the paper is divided into two sections: visual features extraction and grasp planning. In order to provide a suitable description of object contour, a method for grouping visual features is proposed. A very important aspect of this method is the wa

    Computation of independent contact regions for grasping 3-D objects

    Get PDF
    Precision grasp synthesis has received a lot of attention in past few last years. However, real mechanical hands can hardly assure that the fingers will precisely touch the object at the computed contact points. The concept of independent contact regions (ICRs) was introduced to provide robustness to finger positioning errors during an object grasping: A finger contact anywhere inside each of these regions assures a force-closure grasp, despite the exact contact position. This paper presents an efficient algorithm to compute ICRs with any number of frictionless or frictional contacts on the surface of any 3-D object. The proposed approach generates the independent regions by growing them around the contact points of a given starting grasp. A two-phase approach is provided to find a locally optimal force-closure grasp that serves as the starting grasp, considering as grasp quality measure the largest perturbation wrench that the grasp can resist, independently of the perturbation direction. The proposed method can also be applied to compute ICRs when several contacts are fixed beforehand. The approach has been implemented, and application examples are included to illustrate its performance.Peer Reviewe

    Frictionless grasp with 7 fingers on discretized 3D objects

    Get PDF
    This paper presents an algorithm to plain locally frictionless grasp on 3D objects. The objects can be of any arbitrary shape, since the surface is discretized in a cloud of points. The planning algorithm finds an initial force-closure grasp that is iteratively improved through an oriented search procedure. The grasp quality is measured with the “largest ball” criterion, and a force-closure test based on geometric considerations is used. The efficiency of the algorithm is illustrated through numerical example
    • 

    corecore