25 research outputs found

    FPGA Acceleration of Pre-Alignment Filters for Short Read Mapping With HLS

    Get PDF
    Pre-alignment filters are useful for reducing the computational requirements of genomic sequence mappers. Most of them are based on estimating or computing the edit distance between sequences and their candidate locations in a reference genome using a subset of the dynamic programming table used to compute Levenshtein distance. Some of their FPGA implementations of use classic HDL toolchains, thus limiting their portability. Currently, most FPGA accelerators offered by heterogeneous cloud providers support C/C++ HLS. In this work, we implement and optimize several state-of-the-art pre-alignment filters using C/C++ based-HLS to expand their portability to a wide range of systems supporting the OpenCL runtime. Moreover, we perform a complete analysis of the performance and accuracy of the filters and analyze the implications of the results. The maximum throughput obtained by an exact filter is 95.1 MPairs/s including memory transfers using 100 bp sequences, which is the highest ever reported for a comparable system and more than two times faster than previous HDL-based results. The best energy efficiency obtained from the accelerator (not considering host CPU) is 2.1 MPairs/J, more than one order of magnitude higher than other accelerator-based comparable approaches from the state of the art.10.13039/501100008530-European Union Regional Development Fund (ERDF) within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of the total cost eligible under the Designing RISC-V based Accelerators for next generation computers project (DRAC) (Grant Number: [001-P-001723]) 10.13039/501100002809-Catalan Government (Grant Number: 2017-SGR-313 and 2017-SGR-1624) 10.13039/501100004837-Spanish Ministry of Science, Innovation and Universities (Grant Number: PID2020-113614RB-C21 and RTI2018-095209-B-C22)Peer ReviewedPostprint (published version

    Beyond shared memory loop parallelism in the polyhedral model

    Get PDF
    2013 Spring.Includes bibliographical references.With the introduction of multi-core processors, motivated by power and energy concerns, parallel processing has become main-stream. Parallel programming is much more difficult due to its non-deterministic nature, and because of parallel programming bugs that arise from non-determinacy. One solution is automatic parallelization, where it is entirely up to the compiler to efficiently parallelize sequential programs. However, automatic parallelization is very difficult, and only a handful of successful techniques are available, even after decades of research. Automatic parallelization for distributed memory architectures is even more problematic in that it requires explicit handling of data partitioning and communication. Since data must be partitioned among multiple nodes that do not share memory, the original memory allocation of sequential programs cannot be directly used. One of the main contributions of this dissertation is the development of techniques for generating distributed memory parallel code with parametric tiling. Our approach builds on important contributions to the polyhedral model, a mathematical framework for reasoning about program transformations. We show that many affine control programs can be uniformized only with simple techniques. Being able to assume uniform dependences significantly simplifies distributed memory code generation, and also enables parametric tiling. Our approach implemented in the AlphaZ system, a system for prototyping analyses, transformations, and code generators in the polyhedral model. The key features of AlphaZ are memory re-allocation, and explicit representation of reductions. We evaluate our approach on a collection of polyhedral kernels from the PolyBench suite, and show that our approach scales as well as PLuTo, a state-of-the-art shared memory automatic parallelizer using the polyhedral model. Automatic parallelization is only one approach to dealing with the non-deterministic nature of parallel programming that leaves the difficulty entirely to the compiler. Another approach is to develop novel parallel programming languages. These languages, such as X10, aim to provide highly productive parallel programming environment by including parallelism into the language design. However, even in these languages, parallel bugs remain to be an important issue that hinders programmer productivity. Another contribution of this dissertation is to extend the array dataflow analysis to handle a subset of X10 programs. We apply the result of dataflow analysis to statically guarantee determinism. Providing static guarantees can significantly increase programmer productivity by catching questionable implementations at compile-time, or even while programming

    High performance reconfigurable architectures for biological sequence alignment

    Get PDF
    Bioinformatics and computational biology (BCB) is a rapidly developing multidisciplinary field which encompasses a wide range of domains, including genomic sequence alignments. It is a fundamental tool in molecular biology in searching for homology between sequences. Sequence alignments are currently gaining close attention due to their great impact on the quality aspects of life such as facilitating early disease diagnosis, identifying the characteristics of a newly discovered sequence, and drug engineering. With the vast growth of genomic data, searching for a sequence homology over huge databases (often measured in gigabytes) is unable to produce results within a realistic time, hence the need for acceleration. Since the exponential increase of biological databases as a result of the human genome project (HGP), supercomputers and other parallel architectures such as the special purpose Very Large Scale Integration (VLSI) chip, Graphic Processing Unit (GPUs) and Field Programmable Gate Arrays (FPGAs) have become popular acceleration platforms. Nevertheless, there are always trade-off between area, speed, power, cost, development time and reusability when selecting an acceleration platform. FPGAs generally offer more flexibility, higher performance and lower overheads. However, they suffer from a relatively low level programming model as compared with off-the-shelf microprocessors such as standard microprocessors and GPUs. Due to the aforementioned limitations, the need has arisen for optimized FPGA core implementations which are crucial for this technology to become viable in high performance computing (HPC). This research proposes the use of state-of-the-art reprogrammable system-on-chip technology on FPGAs to accelerate three widely-used sequence alignment algorithms; the Smith-Waterman with affine gap penalty algorithm, the profile hidden Markov model (HMM) algorithm and the Basic Local Alignment Search Tool (BLAST) algorithm. The three novel aspects of this research are firstly that the algorithms are designed and implemented in hardware, with each core achieving the highest performance compared to the state-of-the-art. Secondly, an efficient scheduling strategy based on the double buffering technique is adopted into the hardware architectures. Here, when the alignment matrix computation task is overlapped with the PE configuration in a folded systolic array, the overall throughput of the core is significantly increased. This is due to the bound PE configuration time and the parallel PE configuration approach irrespective of the number of PEs in a systolic array. In addition, the use of only two configuration elements in the PE optimizes hardware resources and enables the scalability of PE systolic arrays without relying on restricted onboard memory resources. Finally, a new performance metric is devised, which facilitates the effective comparison of design performance between different FPGA devices and families. The normalized performance indicator (speed-up per area per process technology) takes out advantages of the area and lithography technology of any FPGA resulting in fairer comparisons. The cores have been designed using Verilog HDL and prototyped on the Alpha Data ADM-XRC-5LX card with the Virtex-5 XC5VLX110-3FF1153 FPGA. The implementation results show that the proposed architectures achieved giga cell updates per second (GCUPS) performances of 26.8, 29.5 and 24.2 respectively for the acceleration of the Smith-Waterman with affine gap penalty algorithm, the profile HMM algorithm and the BLAST algorithm. In terms of speed-up improvements, comparisons were made on performance of the designed cores against their corresponding software and the reported FPGA implementations. In the case of comparison with equivalent software execution, acceleration of the optimal alignment algorithm in hardware yielded an average speed-up of 269x as compared to the SSEARCH 35 software. For the profile HMM-based sequence alignment, the designed core achieved speed-up of 103x and 8.3x against the HMMER 2.0 and the latest version of HMMER (version 3.0) respectively. On the other hand, the implementation of the gapped BLAST with the two-hit method in hardware achieved a greater than tenfold speed-up compared to the latest NCBI BLAST software. In terms of comparison against other reported FPGA implementations, the proposed normalized performance indicator was used to evaluate the designed architectures fairly. The results showed that the first architecture achieved more than 50 percent improvement, while acceleration of the profile HMM sequence alignment in hardware gained a normalized speed-up of 1.34. In the case of the gapped BLAST with the two-hit method, the designed core achieved 11x speed-up after taking out advantages of the Virtex-5 FPGA. In addition, further analysis was conducted in terms of cost and power performances; it was noted that, the core achieved 0.46 MCUPS per dollar spent and 958.1 MCUPS per watt. This shows that FPGAs can be an attractive platform for high performance computation with advantages of smaller area footprint as well as represent economic ‘green’ solution compared to the other acceleration platforms. Higher throughput can be achieved by redeploying the cores on newer, bigger and faster FPGAs with minimal design effort

    Accelerating dynamic programming

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 129-136).Dynamic Programming (DP) is a fundamental problem-solving technique that has been widely used for solving a broad range of search and optimization problems. While DP can be invoked when more specialized methods fail, this generality often incurs a cost in efficiency. We explore a unifying toolkit for speeding up DP, and algorithms that use DP as subroutines. Our methods and results can be summarized as follows. - Acceleration via Compression. Compression is traditionally used to efficiently store data. We use compression in order to identify repeats in the table that imply a redundant computation. Utilizing these repeats requires a new DP, and often different DPs for different compression schemes. We present the first provable speedup of the celebrated Viterbi algorithm (1967) that is used for the decoding and training of Hidden Markov Models (HMMs). Our speedup relies on the compression of the HMM's observable sequence. - Totally Monotone Matrices. It is well known that a wide variety of DPs can be reduced to the problem of finding row minima in totally monotone matrices. We introduce this scheme in the context of planar graph problems. In particular, we show that planar graph problems such as shortest paths, feasible flow, bipartite perfect matching, and replacement paths can be accelerated by DPs that exploit a total-monotonicity property of the shortest paths. - Combining Compression and Total Monotonicity. We introduce a method for accelerating string edit distance computation by combining compression and totally monotone matrices.(cont.) In the heart of this method are algorithms for computing the edit distance between two straight-line programs. These enable us to exploits the compressibility of strings, even if each string is compressed using a different compression scheme. - Partial Tables. In typical DP settings, a table is filled in its entirety, where each cell corresponds to some subproblem. In some cases, by changing the DP, it is possible to compute asymptotically less cells of the table. We show that [theta](n³) subproblems are both necessary and sufficient for computing the similarity between two trees. This improves all known solutions and brings the idea of partial tables to its full extent. - Fractional Subproblems. In some DPs, the solution to a subproblem is a data structure rather than a single value. The entire data structure of a subproblem is then processed and used to construct the data structure of larger subproblems. We suggest a method for reusing parts of a subproblem's data structure. In some cases, such fractional parts remain unchanged when constructing the data structure of larger subproblems. In these cases, it is possible to copy this part of the data structure to the larger subproblem using only a constant number of pointer changes. We show how this idea can be used for finding the optimal tree searching strategy in linear time. This is a generalization of the well known binary search technique from arrays to trees.by Oren Weimann.Ph.D

    MR-CUDASW - GPU accelerated Smith-Waterman algorithm for medium-length (meta)genomic data

    Get PDF
    The idea of using a graphics processing unit (GPU) for more than simply graphic output purposes has been around for quite some time in scientific communities. However, it is only recently that its benefits for a range of bioinformatics and life sciences compute-intensive tasks has been recognized. This thesis investigates the possibility of improving the performance of the overlap determination stage of an Overlap Layout Consensus (OLC)-based assembler by using a GPU-based implementation of the Smith-Waterman algorithm. In this thesis an existing GPU-accelerated sequence alignment algorithm is adapted and expanded to reduce its completion time. A number of improvements and changes are made to the original software. Workload distribution, query profile construction, and thread scheduling techniques implemented by the original program are replaced by custom methods specifically designed to handle medium-length reads. Accordingly, this algorithm is the first highly parallel solution that has been specifically optimized to process medium-length nucleotide reads (DNA/RNA) from modern sequencing machines (i.e. Ion Torrent). Results show that the software reaches up to 82 GCUPS (Giga Cell Updates Per Second) on a single-GPU graphic card running on a commodity desktop hardware. As a result it is the fastest GPU-based implemen- tation of the Smith-Waterman algorithm tailored for processing medium-length nucleotide reads. Despite being designed for performing the Smith-Waterman algorithm on medium-length nucleotide sequences, this program also presents great potential for improving heterogeneous computing with CUDA-enabled GPUs in general and is expected to make contributions to other research problems that require sensitive pairwise alignment to be applied to a large number of reads. Our results show that it is possible to improve the performance of bioinformatics algorithms by taking full advantage of the compute resources of the underlying commodity hardware and further, these results are especially encouraging since GPU performance grows faster than multi-core CPUs
    corecore