1,690 research outputs found

    Complex oscillations in the delayed Fitzhugh-Nagumo equation

    Full text link
    Motivated by the dynamics of neuronal responses, we analyze the dynamics of the Fitzhugh-Nagumo slow-fast system with delayed self-coupling. This system provides a canonical example of a canard explosion for sufficiently small delays. Beyond this regime, delays significantly enrich the dynamics, leading to mixed-mode oscillations, bursting and chaos. These behaviors emerge from a delay-induced subcritical Bogdanov-Takens instability arising at the fold points of the S-shaped critical manifold. Underlying the transition from canard-induced to delay-induced dynamics is an abrupt switch in the nature of the Hopf bifurcation

    Limit cycle bifurcations from a nilpotent focus or center of planar systems

    Full text link
    In this paper, we study the analytical property of the Poincare return map and the generalized focal values of an analytical planar system with a nilpotent focus or center. Then we use the focal values and the map to study the number of limit cycles of this kind of systems with parameters, and obtain some new results on the lower and upper bounds of the maximal number of limit cycles near the nilpotent focus or center.Comment: This paper was submitted to Journal of Mathematical Analysis and Application

    Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model

    Full text link
    We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a subtropical jet; these features recall realistic climatological properties of the oceanic atmosphere. Finally, a predictability analysis is performed. Once the decadal-scale periodic orbits develop, the coupled system's short-term instabilities --- as measured by its Lyapunov exponents --- are drastically reduced, indicating the ocean's stabilizing role on the atmospheric dynamics. On decadal time scales, the recurrence of the solution in a certain region of the invariant subspace associated with slow modes displays some extended predictability, as reflected by the oscillatory behavior of the error for the atmospheric variables at long lead times.Comment: v1: 41 pages, 17 figures; v2-: 42 pages, 15 figure

    Switching to nonhyperbolic cycles from codimension two bifurcations of equilibria of delay differential equations

    Get PDF
    In this paper we perform the parameter-dependent center manifold reduction near the generalized Hopf (Bautin), fold-Hopf, Hopf-Hopf and transcritical-Hopf bifurcations in delay differential equations (DDEs). This allows us to initialize the continuation of codimension one equilibria and cycle bifurcations emanating from these codimension two bifurcation points. The normal form coefficients are derived in the functional analytic perturbation framework for dual semigroups (sun-star calculus) using a normalization technique based on the Fredholm alternative. The obtained expressions give explicit formulas which have been implemented in the freely available numerical software package DDE-BifTool. While our theoretical results are proven to apply more generally, the software implementation and examples focus on DDEs with finitely many discrete delays. Together with the continuation capabilities of DDE-BifTool, this provides a powerful tool to study the dynamics near equilibria of such DDEs. The effectiveness is demonstrated on various models
    • …
    corecore