46 research outputs found

    Architecture, Services and Protocols for CRUTIAL

    Get PDF
    This document describes the complete specification of the architecture, services and protocols of the project CRUTIAL. The CRUTIAL Architecture intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures (CII), in particular in the electrical sector. In general lines, the document starts by presenting the main architectural options and components of the architecture, with a special emphasis on a protection device called the CRUTIAL Information Switch (CIS). Given the various criticality levels of the equipments that have to be protected, and the cost of using a replicated device, we define a hierarchy of CIS designs incrementally more resilient. The different CIS designs offer various trade offs in terms of capabilities to prevent and tolerate intrusions, both in the device itself and in the information infrastructure. The Middleware Services, APIs and Protocols chapter describes our approach to intrusion tolerant middleware. The CRUTIAL middleware comprises several building blocks that are organized on a set of layers. The Multipoint Network layer is the lowest layer of the middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support layer features three important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), the CIS Communication service and the Fosel service for mitigating DoS attacks. The Activity Support layer comprises the CIS Protection service, and the Access Control and Authorization service. The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII’s organizations. The Monitoring and Failure Detection layer contains a definition of the services devoted to monitoring and failure detection activities. The Runtime Support Services, APIs, and Protocols chapter features as a main component the Proactive-Reactive Recovery service, whose aim is to guarantee perpetual correct execution of any components it protects.Project co-funded by the European Commission within the Sixth Frame-work Programme (2002-2006

    Preliminary Specification of Services and Protocols

    Get PDF
    This document describes the preliminary specification of services and protocols for the Crutial Architecture. The Crutial Architecture definition, first addressed in Crutial Project Technical Report D4 (January 2007), intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures, in particular in the electrical sector. The definitions herein elaborate on the major architectural options and components established in the Preliminary Architecture Specification (D4), with special relevance to the Crutial middleware building blocks, and are based on the fault, synchrony and topological models defined in the same document. The document, in general lines, describes the Runtime Support Services and APIs, and the Middleware Services and APIs. Then, it delves into the protocols, describing: Runtime Support Protocols, and Middleware Services Protocols. The Runtime Support Services and APIs chapter features as a main component, the Proactive-Reactive Recovery Service, whose aim is to guarantee perpetual execution of any components it protects. The Middleware Services and APIs chapter describes our approach to intrusion-tolerant middleware. The middleware comprises several layers. The Multipoint Network layer is the lowest layer of CRUTIAL's middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support Services feature two important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), and the Overlay Protection Layer (OPL) against DoS attacks. The Activity Support Services currently defined comprise the CIS Protection service, and the Access Control and Authorization service. Protection as described in this report is implemented by mechanisms and protocols residing on a device called Crutial Information Switch (CIS). The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII's organizations.The Monitoring and Failure Detection layer contains a preliminary definition of the middleware services devoted to monitoring and failure detection activities. The remaining chapters describe the protocols implementing the above-mentioned services: Runtime Support Protocols, and Middleware Services Protocol

    A holistic approach for measuring the survivability of SCADA systems

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are responsible for controlling and monitoring Industrial Control Systems (ICS) and Critical Infrastructure Systems (CIS) among others. Such systems are responsible to provide services our society relies on such as gas, electricity, and water distribution. They process our waste; manage our railways and our traffic. Nevertheless to say, they are vital for our society and any disruptions on such systems may produce from financial disasters to ultimately loss of lives. SCADA systems have evolved over the years, from standalone, proprietary solutions and closed networks into large-scale, highly distributed software systems operating over open networks such as the internet. In addition, the hardware and software utilised by SCADA systems is now, in most cases, based on COTS (Commercial Off-The-Shelf) solutions. As they evolved they became vulnerable to malicious attacks. Over the last few years there is a push from the computer security industry on adapting their security tools and techniques to address the security issues of SCADA systems. Such move is welcome however is not sufficient, otherwise successful malicious attacks on computer systems would be non-existent. We strongly believe that rather than trying to stop and detect every attack on SCADA systems it is imperative to focus on providing critical services in the presence of malicious attacks. Such motivation is similar with the concepts of survivability, a discipline integrates areas of computer science such as performance, security, fault-tolerance and reliability. In this thesis we present a new concept of survivability; Holistic survivability is an analysis framework suitable for a new era of data-driven networked systems. It extends the current view of survivability by incorporating service interdependencies as a key property and aspects of machine learning. The framework uses the formalism of probabilistic graphical models to quantify survivability and introduces new metrics and heuristics to learn and identify essential services automatically. Current definitions of survivability are often limited since they either apply performance as measurement metric or use security metrics without any survivability context. Holistic survivability addresses such issues by providing a flexible framework where performance and security metrics can be tailored to the context of survivability. In other words, by applying performance and security our work aims to support key survivability properties such as recognition and resistance. The models and metrics here introduced are applied to SCADA systems as such systems insecurity is one of the motivations of this work. We believe that the proposed work goes beyond the current status of survivability models. Holistic survivability is flexible enough to support the addition of other metrics and can be easily used with different models. Because it is based on a well-known formalism its definition and implementation are easy to grasp and to apply. Perhaps more importantly, this proposed work is aimed to a new era where data is being produced and consumed on a large-scale. Holistic survivability aims to be the catalyst to new models based on data that will provide better and more accurate insights on the survivability of systems

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.Peer ReviewedAgha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., Ginting, M. F., Ebadi, K., Anderson, M., Pailevanian, T., Terry, E., Wolf, M., Tagliabue, A., Vaquero, T. S., Palieri, M., Tepsuporn, S., Chang, Y., Kalantari, A., Chavez, F., Lopez, B., Funabiki, N., Miles, G., Touma, T., Buscicchio, A., Tordesillas, J., Alatur, N., Nash, J., Walsh, W., Jung, S., Lee, H., Kanellakis, C., Mayo, J., Harper, S., Kaufmann, M., Dixit, A., Correa, G. J., Lee, C., Gao, J., Merewether, G., Maldonado-Contreras, J., Salhotra, G., Da Silva, M. S., Ramtoula, B., Fakoorian, S., Hatteland, A., Kim, T., Bartlett, T., Stephens, A., Kim, L., Bergh, C., Heiden, E., Lew, T., Cauligi, A., Heywood, T., Kramer, A., Leopold, H. A., Melikyan, H., Choi, H. C., Daftry, S., Toupet, O., Wee, I., Thakur, A., Feras, M., Beltrame, G., Nikolakopoulos, G., Shim, D., Carlone, L., & Burdick, JPostprint (published version

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)

    Critical Services continuity, Resilience and Security: Proceedings of the 56th ESReDA Seminar

    Get PDF
    Critical Infrastructures (CIs) remain among the most important and vital service providers to modern societies. Severe CIs’ disruptions may endanger security of the citizen, availability of strategic assets and even the governance stability. Not surprisingly, CIs are often targets of intentional attacks, either of physical or cyber nature. Newly emerging hybrid threats primarily target CIs as part of the warfare. ESReDA as one of the most active EU networks in the field has initiated a project group (CI-PR/MS&A-Data) on the “Critical Infrastructure/Modelling, Simulation and Analysis – Data”. The main focus of the project group is to report on the state of progress in MS&A of the CIs preparedness & resilience with a specific focus on the corresponding data availability and relevance. In order to report on the most recent developments in the field of the CIs preparedness & resilience MS&A and the availability of the relevant data, ESReDA held its 48th, 52nd and 56th Seminars. The 56th ESReDA Seminar on “Critical Services continuity, Resilience and Security” attracted about 30 participants from industry, authorities, operators, research centres and academia. The seminar programme consisted of 18 technical papers, two plenary speeches and an interactive session on Climate & CI protection.JRC.G.10-Knowledge for Nuclear Security and Safet

    Technology 2004, Vol. 2

    Get PDF
    Proceedings from symposia of the Technology 2004 Conference, November 8-10, 1994, Washington, DC. Volume 2 features papers on computers and software, virtual reality simulation, environmental technology, video and imaging, medical technology and life sciences, robotics and artificial intelligence, and electronics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 291)

    Get PDF
    This bibliography lists 757 reports, articles, and other documents introduced into the NASA scientific and technical information system in May. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore