49,133 research outputs found

    Weighted Class Complexity: A Measure of Complexity for Object Oriented System

    Get PDF
    Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. In this paper, we propose a metric to compute the structural and cognitive complexity of class by associating a weight to the class, called as Weighted Class Complexity (WCC). On the contrary, of the other metrics used for object oriented systems, proposed metric calculates the complexity of a class due to methods and attributes in terms of cognitive weight. The proposed metric has been demonstrated with OO examples. The theoretical and practical evaluations based on the information theory have shown that the proposed metric is on ratio scale and satisfies most of the parameters required by the measurement theor

    Evaluation Criteria for Object-oriented Metrics

    Get PDF
    In this paper an evaluation model for object-oriented (OO) metrics is proposed. We have evaluated the existing evaluation criteria for OO metrics, and based on the observations, a model is proposed which tries to cover most of the features for the evaluation of OO metrics. The model is validated by applying it to existing OO metrics. In contrast to the other existing criteria, the proposed model is simple in implementation and includes the practical and important aspects of evaluation; hence it suitable to evaluate and validate any OO complexity metric

    An Approach for the Empirical Validation of Software Complexity Measures

    Get PDF
    Software metrics are widely accepted tools to control and assure software quality. A large number of software metrics with a variety of content can be found in the literature; however most of them are not adopted in industry as they are seen as irrelevant to needs, as they are unsupported, and the major reason behind this is due to improper empirical validation. This paper tries to identify possible root causes for the improper empirical validation of the software metrics. A practical model for the empirical validation of software metrics is proposed along with root causes. The model is validated by applying it to recently proposed and well known metrics

    An Empirical Study of a Repeatable Method for Reengineering Procedural Software Systems to Object- Oriented Systems

    Get PDF
    This paper describes a repeatable method for reengineering a procedural system to an object-oriented system. The method uses coupling metrics to assist a domain expert in identifying candidate objects. An application of the method to a simple program is given, and the effectiveness of the various coupling metrics are discussed. We perform a detailed comparison of our repeatable method with an ad hoc, manual reengineering effort based on the same procedural program. The repeatable method was found to be effective for identifying objects. It produced code that was much smaller, more efficient, and passed more regression tests than the ad hoc method. Analysis of object-oriented metrics indicated both simpler code and less variability among classes for the repeatable method

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache
    • …
    corecore