1,954 research outputs found

    Controlling the level of sparsity in MPC

    Full text link
    In optimization routines used for on-line Model Predictive Control (MPC), linear systems of equations are usually solved in each iteration. This is true both for Active Set (AS) methods as well as for Interior Point (IP) methods, and for linear MPC as well as for nonlinear MPC and hybrid MPC. The main computational effort is spent while solving these linear systems of equations, and hence, it is of greatest interest to solve them efficiently. Classically, the optimization problem has been formulated in either of two different ways. One of them leading to a sparse linear system of equations involving relatively many variables to solve in each iteration and the other one leading to a dense linear system of equations involving relatively few variables. In this work, it is shown that it is possible not only to consider these two distinct choices of formulations. Instead it is shown that it is possible to create an entire family of formulations with different levels of sparsity and number of variables, and that this extra degree of freedom can be exploited to get even better performance with the software and hardware at hand. This result also provides a better answer to an often discussed question in MPC; should the sparse or dense formulation be used. In this work, it is shown that the answer to this question is that often none of these classical choices is the best choice, and that a better choice with a different level of sparsity actually can be found

    The turnpike property in finite-dimensional nonlinear optimal control

    Get PDF
    Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory

    Dichotomous Hamiltonians with Unbounded Entries and Solutions of Riccati Equations

    Full text link
    An operator Riccati equation from systems theory is considered in the case that all entries of the associated Hamiltonian are unbounded. Using a certain dichotomy property of the Hamiltonian and its symmetry with respect to two different indefinite inner products, we prove the existence of nonnegative and nonpositive solutions of the Riccati equation. Moreover, conditions for the boundedness and uniqueness of these solutions are established.Comment: 31 pages, 3 figures; proof of uniqueness of solutions added; to appear in Journal of Evolution Equation

    A theory of the infinite horizon LQ-problem for composite systems of PDEs with boundary control

    Full text link
    We study the infinite horizon Linear-Quadratic problem and the associated algebraic Riccati equations for systems with unbounded control actions. The operator-theoretic context is motivated by composite systems of Partial Differential Equations (PDE) with boundary or point control. Specific focus is placed on systems of coupled hyperbolic/parabolic PDE with an overall `predominant' hyperbolic character, such as, e.g., some models for thermoelastic or fluid-structure interactions. While unbounded control actions lead to Riccati equations with unbounded (operator) coefficients, unlike the parabolic case solvability of these equations becomes a major issue, owing to the lack of sufficient regularity of the solutions to the composite dynamics. In the present case, even the more general theory appealing to estimates of the singularity displayed by the kernel which occurs in the integral representation of the solution to the control system fails. A novel framework which embodies possible hyperbolic components of the dynamics has been introduced by the authors in 2005, and a full theory of the LQ-problem on a finite time horizon has been developed. The present paper provides the infinite time horizon theory, culminating in well-posedness of the corresponding (algebraic) Riccati equations. New technical challenges are encountered and new tools are needed, especially in order to pinpoint the differentiability of the optimal solution. The theory is illustrated by means of a boundary control problem arising in thermoelasticity.Comment: 50 pages, submitte

    Analytical Approximation Methods for the Stabilizing Solution of the Hamilton–Jacobi Equation

    Get PDF
    In this paper, two methods for approximating the stabilizing solution of the Hamilton–Jacobi equation are proposed using symplectic geometry and a Hamiltonian perturbation technique as well as stable manifold theory. The first method uses the fact that the Hamiltonian lifted system of an integrable system is also integrable and regards the corresponding Hamiltonian system of the Hamilton–Jacobi equation as an integrable Hamiltonian system with a perturbation caused by control. The second method directly approximates the stable flow of the Hamiltonian systems using a modification of stable manifold theory. Both methods provide analytical approximations of the stable Lagrangian submanifold from which the stabilizing solution is derived. Two examples illustrate the effectiveness of the methods.
    • …
    corecore