288 research outputs found

    On Maltsev Digraphs

    Get PDF
    This is an Open Access article, first published by E-CJ on 25 February 2015.We study digraphs preserved by a Maltsev operation: Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing in this way that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. We then generalize results from Kazda (2011) to show that a Maltsev digraph is preserved not only by a majority operation, but by a class of other operations (e.g., minority, Pixley) and obtain a O(|VG|4)-time algorithm to recognize Maltsev digraphs. We also prove analogous results for digraphs preserved by conservative Maltsev operations which we use to establish that the list homomorphism problem for Maltsev digraphs is in L. We then give a polynomial time characterisation of Maltsev digraphs admitting a conservative 2-semilattice operation. Finally, we give a simple inductive construction of directed acyclic digraphs preserved by a Maltsev operation, and relate them with series parallel digraphs.Peer reviewedFinal Published versio

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p≠2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page

    A Study of kk-dipath Colourings of Oriented Graphs

    Full text link
    We examine tt-colourings of oriented graphs in which, for a fixed integer k≥1k \geq 1, vertices joined by a directed path of length at most kk must be assigned different colours. A homomorphism model that extends the ideas of Sherk for the case k=2k=2 is described. Dichotomy theorems for the complexity of the problem of deciding, for fixed kk and tt, whether there exists such a tt-colouring are proved.Comment: 14 page

    Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).If,moreover,eachvertex. If, moreover, each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H,theminimumcosthomomorphismproblemfor, the minimum cost homomorphism problem for H,denotedMinHOM(, denoted MinHOM(H),canbeformulatedasfollows:Givenaninputdigraph), can be formulated as follows: Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),decidewhetherthereexistsahomomorphismof, decide whether there exists a homomorphism of Gto to H$ and, if one exists, to find one of minimum cost. Minimum cost homomorphism problems encompass (or are related to) many well studied optimization problems such as the minimum cost chromatic partition and repair analysis problems. We focus on the minimum cost homomorphism problem for locally semicomplete digraphs and quasi-transitive digraphs which are two well-known generalizations of tournaments. Using graph-theoretic characterization results for the two digraph classes, we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for both classes

    Hereditarily hard H-colouring problems

    Get PDF
    AbstractLet H be a graph (respectively digraph) whose vertices are called ‘colours’. An H-colouring of a graph (respectively digraph) G is an assignment of these colours to the vertices of G so that if u is adjacent to v in G, then the colour of u is adjacent to the colour of v in H. We continue the study of the complexity of the H-colouring problem ‘Does a given graph (respectively digraph) admit an H-colouring?’. For graphs it was proved that the H-colouring problem is NP-complete whenever H contains an odd cycle, and is polynomial for bipartite graphs. For directed graphs the situation is quite different, as the addition of an edge to H can result in the complexity of the H-colouring problem shifting from NP-complete to polynomial. In fact, there is not even a plausible conjecture as to what makes directed H-colouring problems difficult in general. Some order may perhaps be found for those digraphs H in which each vertex has positive in-degree and positive out-degree. In any event, there is at least, in this case, a conjecture of a classification by complexity of these directed H-colouring problems. Another way, which we propose here, to bring some order to the situation is to restrict our attention to those digraphs H which, like odd cycles in the case of graphs, are hereditarily hard, i.e., are such that the H′-colouring problem is NP-hard for any digraph H′ containing H as a subdigraph. After establishing some properties of the digraphs in this class, we make a conjecture as to precisely which digraphs are hereditarily hard. Surprisingly, this conjecture turns out to be equivalent to the one mentioned earlier. We describe several infinite families of hereditarily hard digraphs, and identify a family of digraphs which are minimal in the sense that it would be sufficient to verify the conjecture for members of that family

    On BMRN*-colouring of planar digraphs

    Get PDF
    In a recent work, Bensmail, Blanc, Cohen, Havet and Rocha, motivated by applications for TDMA scheduling problems, have introduced the notion of BMRN*-colouring of digraphs, which is a type of arc-colouring with particular colouring constraints. In particular, they gave a special focus to planar digraphs. They notably proved that every planar digraph can be 8-BMRN*-coloured, while there exist planar digraphs for which 7 colours are needed in a BMRN*-colouring. They also proved that the problem of deciding whether a planar digraph can be 3-BMRN*-coloured is NP-hard. In this work, we pursue these investigations on planar digraphs, in particular by answering some of the questions left open by the authors in that seminal work. We exhibit planar digraphs needing 8 colours to be BMRN*-coloured, thus showing that the upper bound of Bensmail, Blanc, Cohen, Havet and Rocha cannot be decreased in general. We also generalize their complexity result by showing that the problem of deciding whether a planar digraph can be k-BMRN*-coloured is NP-hard for every k ∈ {3,...,6}. Finally, we investigate the connection between the girth of a planar digraphs and the least number of colours in its BMRN*-colourings
    • …
    corecore