508 research outputs found

    Weight Try-Once-Discard Protocol-Based L_2 L_infinity State Estimation for Markovian Jumping Neural Networks with Partially Known Transition Probabilities

    Full text link
    It was the L_2 L_infinity performance index that for the first time is initiated into the discussion on state estimation of delayed MJNNs with with partially known transition probabilities, which provides a more general promotion for the estimation error.The WTOD protocol is adopted to dispatch the sensor nodes so as to effectively alleviate the updating frequency of output signals. The hybrid effects of the time delays, Markov chain, and protocol parameters are apparently reflected in the co-designed estimator which can be solved by a combination of comprehensive matrix inequalities

    State Estimation for Time-Delay Systems with Markov Jump Parameters and Missing Measurements

    Get PDF
    This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the convexity property of the matrix inequality, a sufficient condition for the existence of the desired state estimator for Markovian jump systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions. Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Hardware-Efficient Scalable Reinforcement Learning Systems

    Get PDF
    Reinforcement Learning (RL) is a machine learning discipline in which an agent learns by interacting with its environment. In this paradigm, the agent is required to perceive its state and take actions accordingly. Upon taking each action, a numerical reward is provided by the environment. The goal of the agent is thus to maximize the aggregate rewards it receives over time. Over the past two decades, a large variety of algorithms have been proposed to select actions in order to explore the environment and gradually construct an e€ective strategy that maximizes the rewards. These RL techniques have been successfully applied to numerous real-world, complex applications including board games and motor control tasks. Almost all RL algorithms involve the estimation of a value function, which indicates how good it is for the agent to be in a given state, in terms of the total expected reward in the long run. Alternatively, the value function may re‡ect on the impact of taking a particular action at a given state. The most fundamental approach for constructing such a value function consists of updating a table that contains a value for each state (or each state-action pair). However, this approach is impractical for large scale problems, in which the state and/or action spaces are large. In order to deal with such problems, it is necessary to exploit the generalization capabilities of non-linear function approximators, such as arti
cial neural networks. This dissertation focuses on practical methodologies for solving reinforcement learning problems with large state and/or action spaces. In particular, the work addresses scenarios in which an agent does not have full knowledge of its state, but rather receives partial information about its environment via sensory-based observations. In order to address such intricate problems, novel solutions for both tabular and function-approximation based RL frameworks are proposed. A resource-efficient recurrent neural network algorithm is presented, which exploits adaptive step-size techniques to improve learning characteristics. Moreover, a consolidated actor-critic network is introduced, which omits the modeling redundancy found in typical actor-critic systems. Pivotal concerns are the scalability and speed of the learning algorithms, for which we devise architectures that map efficiently to hardware. As a result, a high degree of parallelism can be achieved. Simulation results that correspond to relevant testbench problems clearly demonstrate the solid performance attributes of the proposed solutions

    Reconstructing Dynamical Systems From Stochastic Differential Equations to Machine Learning

    Get PDF
    Die Modellierung komplexer Systeme mit einer großen Anzahl von Freiheitsgraden ist in den letzten Jahrzehnten zu einer großen Herausforderung geworden. In der Regel werden nur einige wenige Variablen komplexer Systeme in Form von gemessenen Zeitreihen beobachtet, wĂ€hrend die meisten von ihnen - die möglicherweise mit den beobachteten Variablen interagieren - verborgen bleiben. In dieser Arbeit befassen wir uns mit dem Problem der Rekonstruktion und Vorhersage der zugrunde liegenden Dynamik komplexer Systeme mit Hilfe verschiedener datengestĂŒtzter AnsĂ€tze. Im ersten Teil befassen wir uns mit dem umgekehrten Problem der Ableitung einer unbekannten Netzwerkstruktur komplexer Systeme, die AusbreitungsphĂ€nomene widerspiegelt, aus beobachteten Ereignisreihen. Wir untersuchen die paarweise statistische Ähnlichkeit zwischen den Sequenzen von Ereigniszeitpunkten an allen Knotenpunkten durch Ereignissynchronisation (ES) und Ereignis-Koinzidenz-Analyse (ECA), wobei wir uns auf die Idee stĂŒtzen, dass funktionale KonnektivitĂ€t als Stellvertreter fĂŒr strukturelle KonnektivitĂ€t dienen kann. Im zweiten Teil konzentrieren wir uns auf die Rekonstruktion der zugrunde liegenden Dynamik komplexer Systeme anhand ihrer dominanten makroskopischen Variablen unter Verwendung verschiedener stochastischer Differentialgleichungen (SDEs). In dieser Arbeit untersuchen wir die Leistung von drei verschiedenen SDEs - der Langevin-Gleichung (LE), der verallgemeinerten Langevin-Gleichung (GLE) und dem Ansatz der empirischen Modellreduktion (EMR). Unsere Ergebnisse zeigen, dass die LE bessere Ergebnisse fĂŒr Systeme mit schwachem GedĂ€chtnis zeigt, wĂ€hrend sie die zugrunde liegende Dynamik von Systemen mit GedĂ€chtniseffekten und farbigem Rauschen nicht rekonstruieren kann. In diesen Situationen sind GLE und EMR besser geeignet, da die Wechselwirkungen zwischen beobachteten und unbeobachteten Variablen in Form von Speichereffekten berĂŒcksichtigt werden. Im letzten Teil dieser Arbeit entwickeln wir ein Modell, das auf dem Echo State Network (ESN) basiert und mit der PNF-Methode (Past Noise Forecasting) kombiniert wird, um komplexe Systeme in der realen Welt vorherzusagen. Unsere Ergebnisse zeigen, dass das vorgeschlagene Modell die entscheidenden Merkmale der zugrunde liegenden Dynamik der KlimavariabilitĂ€t erfasst.Modeling complex systems with large numbers of degrees of freedom have become a grand challenge over the past decades. Typically, only a few variables of complex systems are observed in terms of measured time series, while the majority of them – which potentially interact with the observed ones - remain hidden. Throughout this thesis, we tackle the problem of reconstructing and predicting the underlying dynamics of complex systems using different data-driven approaches. In the first part, we address the inverse problem of inferring an unknown network structure of complex systems, reflecting spreading phenomena, from observed event series. We study the pairwise statistical similarity between the sequences of event timings at all nodes through event synchronization (ES) and event coincidence analysis (ECA), relying on the idea that functional connectivity can serve as a proxy for structural connectivity. In the second part, we focus on reconstructing the underlying dynamics of complex systems from their dominant macroscopic variables using different Stochastic Differential Equations (SDEs). We investigate the performance of three different SDEs – the Langevin Equation (LE), Generalized Langevin Equation (GLE), and the Empirical Model Reduction (EMR) approach in this thesis. Our results reveal that LE demonstrates better results for systems with weak memory while it fails to reconstruct underlying dynamics of systems with memory effects and colored-noise forcing. In these situations, the GLE and EMR are more suitable candidates since the interactions between observed and unobserved variables are considered in terms of memory effects. In the last part of this thesis, we develop a model based on the Echo State Network (ESN), combined with the past noise forecasting (PNF) method, to predict real-world complex systems. Our results show that the proposed model captures the crucial features of the underlying dynamics of climate variability

    Multiobjective nonfragile fuzzy control for nonlinear stochastic financial systems with mixed time delays

    Get PDF
    In this study, a multiobjective nonfragile control is proposed for a class of stochastic Takagi and Sugeno (T–S) fuzzy systems with mixed time delays to guarantee the optimal H2 and H∞ performance simultaneously. Firstly, based on the T–S fuzzy model, two form of nonfragile state feedback controllers are designed to stabilize the T–S fuzzy system, that is to say, nonfragile state feedback controllers minimize the H2 and H∞ performance simultaneously. Then, by applying T–S fuzzy approach, the multiobjective H2/H∞ nonfragile fuzzy control problem is transformed into linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we efficiently solve Pareto optimal solutions for the MOP by employing LMI-based multiobjective evolution algorithm (MOEA). Finally, the validity of this approach is illustrated by a realistic design example

    Micro-Bunching Control at Electron Storage Rings with Reinforcement Learning

    Get PDF

    Stochastic Control for Cooperative Cyber-Physical Networking

    Get PDF
    Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb von Produktions- und Fertigungslinien, was zu einer stĂ€rker werdenden Verzahnung der physikalischen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen fĂŒhrt. Cyber-physische Systeme (CPS) spielen hierbei eine SchlĂŒsselrolle, indem sie sowohl die physikalischen als auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen UmgebungszustĂ€nde, Messwerte und Steuerbefehle ĂŒber ein Kommunikationsnetzwerk ausgetauscht werden. Die VerfĂŒgbarkeit von kostengĂŒnstigen GerĂ€ten und die Möglichkeit bereits existierende Infrastruktur zu nutzen sorgen dafĂŒr, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der Nutzung von Standard-Netzen sind jedoch auftretende DienstgĂŒte-Schwankungen, welche aus der gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und fĂŒr die Endsysteme in Form von sich Ă€ndernden Latenzen und Daten- und Paketverlustraten sichtbar werden. Regelkreise sind besonders anfĂ€llig fĂŒr DienstgĂŒte-Schwankungen, da sie typischerweise isochrone DatenĂŒbertragungen mit festen Latenzen benötigen, um die gewĂŒnschte RegelgĂŒte zu garantieren. FĂŒr die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man daher klassischerweise auf Lösungen, die diese Anforderungen erfĂŒllen. Diese Lösungen sind jedoch relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen benötigen oder ĂŒber komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren. Die vorliegende Arbeit prĂ€sentiert Ergebnisse des interdisziplinĂ€ren Forschungsprojekts CoCPN:Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um i) die ElastizitĂ€t von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage zu versetzen, mit den auftretenden DienstgĂŒte-Schwankungen umzugehen, und ii) das Netzwerk ĂŒber die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine verteilte Architektur fĂŒr CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfĂŒgbare Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen benötigt CoCPN dafĂŒr keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten ĂŒber den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den typischen Zusammenhang zwischen erreichbarer RegelgĂŒte und Senderate ausnutzt: die erreichbare RegelgĂŒte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden RegelgĂŒte kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden. In dieser Arbeit beschĂ€ftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die auf Basis der ĂŒber den CoCPN-Translator ausgetauschten Meta-Daten die notwendige ElastizitĂ€t liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-DienstgĂŒte zu reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur VerfĂŒgung gestellt wird, dass die Auswirkungen von Verzögerungen und Paketverlusten auf die RegelgĂŒte erfasst. Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt, dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus, dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte Erweiterung ist in der Lage, Änderungen der Netzwerk-DienstgĂŒte abzubilden und ist nicht auf eine bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschrĂ€nkt. ZusĂ€tzlich verzichtet unsere Erweiterung auf die in der Literatur ĂŒbliche Annahme, dass Quittungen fĂŒr empfangene Datenpakete stets fehlerfrei und mit vernachlĂ€ssigbarer Latenz ĂŒbertragen werden. Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften daher eine realistischere BerĂŒcksichtigung der Netzwerk-EinflĂŒsse auf die RegelgĂŒte. Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die RegelgĂŒte prĂ€diziert werden. Auf Basis dieser PrĂ€diktion können StellgrĂ¶ĂŸen dann mit Methoden der stochastischen modellprĂ€diktiven Regelung (stochastic model predictive control) berechnet werden. Unsere realistischere Betrachtung der Netzwerk-EinflĂŒsse auf die RegelgĂŒte fĂŒhrt hierbei zu einer gegenseitigen AbhĂ€ngigkeit von Regelung und SchĂ€tzung. Zur Berechnung der StellgrĂ¶ĂŸen muss der Regler den Zustand der Strecke aus den empfangenen Messungen schĂ€tzen. Die QualitĂ€t dieser SchĂ€tzungen hĂ€ngt von den berechneten StellgrĂ¶ĂŸen und deren Auswirkung auf die Regelstrecke ab. Umgekehrt beeinflusst die QualitĂ€t der SchĂ€tzungen aber maßgeblich die QualitĂ€t der StellgrĂ¶ĂŸen: Ist der SchĂ€tzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige AbhĂ€ngigkeit macht die Berechnung von optimalen StellgrĂ¶ĂŸen unmöglich und bedingt daher die Fokussierung auf das Erforschen von approximativen AnsĂ€tzen. Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren fĂŒr die stochastische modellprĂ€diktive Regelung ĂŒber Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System oft sogenannte multiple model-Algorithmen zur ZustandsschĂ€tzung verwendet werden, welche den geschĂ€tzten Zustand in Form einer Gaußmischdichte reprĂ€sentieren. Auf Basis dieses Zusammenhangs und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer KomplexitĂ€t zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser unterlagerten Regelgesetze lĂ€sst sich dabei als lineare Funktion genau einer der Komponenten der Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensĂ€tzliche Eigenschaften. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion, welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Systems, berechnen. Diese Trajektorie wird hierbei durch die PrĂ€diktion einer initialen ZustandsschĂ€tzung ĂŒber den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine signifikant höhere RegelgĂŒte erzielen können als verwandte AnsĂ€tze aus der Literatur. Der dritte Teil der vorliegenden Arbeit beschĂ€ftigt sich erneut mit dem hybriden System aus dem ersten Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten probabilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen bilden jedoch stets nur Ausschnitte ab und können nie exakt den "Zustand” des Netzwerks reprĂ€sentieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den Netzwerk-Modellen auf die zu erwartende RegelgĂŒte. Weiterhin gehen wir der Frage nach der Existenz von Reglern, die robust gegenĂŒber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen wir zunĂ€chst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-Unsicherheit im hybriden System aus dem ersten Teil manifestieren. FĂŒr solche polytopischen hybride System leiten wir dann eine sowohl notwendige als auch hinreichende StabilitĂ€tsbedingung her, was einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedingung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was die Anwendbarkeit der StabilitĂ€tsbedingung stark limitiert. Daher prĂ€sentieren wir eine hinreichende StabilitĂ€tsbedingung, die in polynomieller Zeit ĂŒberprĂŒft werden kann, da sie auf der ErfĂŒllbarkeit von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers, der die StabilitĂ€t des betrachteten polytopischen hybriden Systems garantiert, von der ErfĂŒllbarkeit einer Ă€hnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern erlaubt. Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen Anwendungen geteilt werden mĂŒssen. Wir demonstrieren, dass insbesondere das Zusammenspiel unserer modellprĂ€diktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlĂ€ssigen Betrieb der Regelkreise ohne unerwĂŒnschte Einbußen der RegelgĂŒte auch dann ermöglicht, wenn sich die Kommunikationsbedingungen plötzlich und unvorhergesehen Ă€ndern. Insgesamt stellt unsere Arbeit somit einen wichtigen Baustein auf dem Weg zu einem flĂ€chendeckenden Einsatz von Standard-Netzen als flexible und adaptive Basis fĂŒr industrielle CPS dar
    • 

    corecore