199 research outputs found

    Contextual and Possibilistic Reasoning for Coalition Formation

    Get PDF
    In multiagent systems, agents often have to rely on other agents to reach their goals, for example when they lack a needed resource or do not have the capability to perform a required action. Agents therefore need to cooperate. Then, some of the questions raised are: Which agent(s) to cooperate with? What are the potential coalitions in which agents can achieve their goals? As the number of possibilities is potentially quite large, how to automate the process? And then, how to select the most appropriate coalition, taking into account the uncertainty in the agents' abilities to carry out certain tasks? In this article, we address the question of how to find and evaluate coalitions among agents in multiagent systems using MCS tools, while taking into consideration the uncertainty around the agents' actions. Our methodology is the following: We first compute the solution space for the formation of coalitions using a contextual reasoning approach. Second, we model agents as contexts in Multi-Context Systems (MCS), and dependence relations among agents seeking to achieve their goals, as bridge rules. Third, we systematically compute all potential coalitions using algorithms for MCS equilibria, and given a set of functional and non-functional requirements, we propose ways to select the best solutions. Finally, in order to handle the uncertainty in the agents' actions, we extend our approach with features of possibilistic reasoning. We illustrate our approach with an example from robotics

    Bot recognition in a Web store: An approach based on unsupervised learning

    Get PDF
    Abstract Web traffic on e-business sites is increasingly dominated by artificial agents (Web bots) which pose a threat to the website security, privacy, and performance. To develop efficient bot detection methods and discover reliable e-customer behavioural patterns, the accurate separation of traffic generated by legitimate users and Web bots is necessary. This paper proposes a machine learning solution to the problem of bot and human session classification, with a specific application to e-commerce. The approach studied in this work explores the use of unsupervised learning (k-means and Graded Possibilistic c-Means), followed by supervised labelling of clusters, a generative learning strategy that decouples modelling the data from labelling them. Its efficiency is evaluated through experiments on real e-commerce data, in realistic conditions, and compared to that of supervised learning classifiers (a multi-layer perceptron neural network and a support vector machine). Results demonstrate that the classification based on unsupervised learning is very efficient, achieving a similar performance level as the fully supervised classification. This is an experimental indication that the bot recognition problem can be successfully dealt with using methods that are less sensitive to mislabelled data or missing labels. A very small fraction of sessions remain misclassified in both cases, so an in-depth analysis of misclassified samples was also performed. This analysis exposed the superiority of the proposed approach which was able to correctly recognize more bots, in fact, and identified more camouflaged agents, that had been erroneously labelled as humans

    A proposal toward a possibilistic multi-robot task allocation

    Full text link
    [EN] One of the main problems to solve in a multi-robot systems is to select the best robot to execute each task (task allocation). Several ways to address this problem have been proposed in the literature. This paper focuses on one of them, the so-called response threshold methods. In a recent previous work, it was proved that the possibilistic Markov chains outperform the classical probabilistic approaches when they are used to implement response threshold methods. The aim of this paper is to summarize the advances given by or research group toward a new possibilistic swarm multi-robot task allocation framework.This research was funded by the Spanish Ministry of Economy and Competitiveness under Grants DPI2014-57746-C03-2-R, TIN2014-53772-R, TIN2014-56381-REDT, TIN2016-81731- REDT and AEI/FEDER, UE funds.Guerrero, J. (2017). A proposal toward a possibilistic multi-robot task allocation. En Proceedings of the Workshop on Applied Topological Structures. Editorial Universitat Politècnica de València. 85-93. http://hdl.handle.net/10251/128044OCS859

    Contributions to artificial intelligence: the IIIA perspective

    Get PDF
    La intel·ligència artificial (IA) és un camp científic i tecnològic relativament nou dedicat a l'estudi de la intel·ligència mitjançant l'ús d'ordinadors com a eines per produir comportament intel·ligent. Inicialment, l'objectiu era essencialment científic: assolir una millor comprensió de la intel·ligència humana. Aquest objectiu ha estat, i encara és, el dels investigadors en ciència cognitiva. Dissortadament, aquest fascinant però ambiciós objectiu és encara molt lluny de ser assolit i ni tan sols podem dir que ens hi haguem acostat significativament. Afortunadament, però, la IA també persegueix un objectiu més aplicat: construir sistemes que ens resultin útils encara que la intel·ligència artificial de què estiguin dotats no tingui res a veure amb la intel·ligència humana i, per tant, aquests sistemes no ens proporcionarien necessàriament informació útil sobre la naturalesa de la intel·ligència humana. Aquest objectiu, que s'emmarca més aviat dins de l'àmbit de l'enginyeria, és actualment el que predomina entre els investigadors en IA i ja ha donat resultats impresionants, tan teòrics com aplicats, en moltíssims dominis d'aplicació. A més, avui dia, els productes i les aplicacions al voltant de la IA representen un mercat anual de desenes de milers de milions de dòlars. Aquest article resumeix les principals contribucions a la IA fetes pels investigadors de l'Institut d'Investigació en Intel·ligència Artificial del Consell Superior d'Investigacions Científiques durant els darrers cinc anys.Artificial intelligence is a relatively new scientific and technological field which studies the nature of intelligence by using computers to produce intelligent behaviour. Initially, the main goal was a purely scientific one, understanding human intelligence, and this remains the aim of cognitive scientists. Unfortunately, such an ambitious and fascinating goal is not only far from being achieved but has yet to be satisfactorily approached. Fortunately, however, artificial intelligence also has an engineering goal: building systems that are useful to people even if the intelligence of such systems has no relation whatsoever with human intelligence, and therefore being able to build them does not necessarily provide any insight into the nature of human intelligence. This engineering goal has become the predominant one among artificial intelligence researchers and has produced impressive results, ranging from knowledge-based systems to autonomous robots, that have been applied to many different domains. Furthermore, artificial intelligence products and services today represent an annual market of tens of billions of dollars worldwide. This article summarizes the main contributions to the field of artificial intelligence made at the IIIA-CSIC (Artificial Intelligence Research Institute of the Spanish Scientific Research Council) over the last five years

    Fuzzy Set Methods for Object Recognition in Space Applications

    Get PDF
    Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms

    Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling

    Get PDF
    Abstract Animal swarms in nature are able to adapt to dynamic changes in their envi-ronment, and through cooperation they can solve problems that are crucial for their survival. Only by means of local interactions with other members of the swarm and with the environment, they can achieve a common goal more efficiently than it would be done by a single individual. This problem-solving behavior that results from the multiplicity of such interactions is referred to as Swarm Intelligence. The mathematical models of swarming behavior in nature were initially proposed to solve optimization problems. Nevertheless, this decentralized approach can be a valuable tool for a variety of applications, where emerging global patterns represent a solution to the task at hand. Methods for the solution of difficult computational problems based on Swarm Intelligence have been experimentally demonstrated and reported in the literature. However, a general framework that would facilitate their design does not exist yet. In this dissertation, a new general design methodology for Swarm Intelligence tools is proposed. By defining a discrete space in which the members of the swarm can move, and by modifying the rules of local interactions and setting the adequate objective function for solutions evaluation, the proposed methodology is tested in various domains. The dissertation presents a set of case studies, and focuses on two general approaches. One approach is to apply Swarm Intelligence as a tool for optimization and feature extraction, and the other approach is to model multi-agent systems such that they resemble swarms of animals in nature providing them with the ability to autonomously perform a task at hand. Artificial swarms are designed to be autonomous, scalable, robust, and adaptive to the changes in their environment. In this work, the methods that exploit one or more of these features are presented. First, the proposed methodology is validated in a real-world scenario seen as a combinatorial optimization problem. Then a set of novel tools for feature extraction, more precisely the adaptive edge detection and the broken-edge linking in digital images is proposed. A novel data clustering algorithm is also proposed and applied to image segmentation. Finally, a scalable algorithm based on the proposed methodology is developed for distributed task allocation in multi-agent systems, and applied to a swarm of robots. The newly proposed general methodology provides a guideline for future developers of the Swarm Intelligence tools. Los enjambres de animales en la naturaleza son capaces de adaptarse a cambios dinamicos en su entorno y, por medio de la cooperación, pueden resolver problemas ´ cruciales para su supervivencia. Unicamente por medio de interacciones locales con otros miembros del enjambre y con el entorno, pueden lograr un objetivo común de forma más eficiente que lo haría un solo individuo. Este comportamiento problema-resolutivo que es resultado de la multiplicidad de interacciones se denomina Inteligencia de Enjambre. Los modelos matemáticos de comportamiento de enjambres en entornos naturales fueron propuestos inicialmente para resolver problemas de optimización. Sin embargo, esta aproximación descentralizada puede ser una herramienta valiosa en una variedad de aplicaciones donde patrones globales emergentes representan una solución de las tareas actuales. Aunque en la literatura se muestra la utilidad de los métodos de Inteligencia de Enjambre, no existe un entorno de trabajo que facilite su diseño. En esta memoria de tesis proponemos una nueva metodologia general de diseño para herramientas de Inteligencia de Enjambre. Desarrollamos herramientas noveles que representan ejem-plos ilustrativos de su implementación. Probamos la metodología propuesta en varios dominios definiendo un espacio discreto en el que los miembros del enjambre pueden moverse, modificando las reglas de las interacciones locales y fijando la función objetivo adecuada para evaluar las soluciones. La memoria de tesis presenta un conjunto de casos de estudio y se centra en dos aproximaciones generales. Una aproximación es aplicar Inteligencia de Enjambre como herramienta de optimización y extracción de características mientras que la otra es modelar sistemas multi-agente de tal manera que se asemejen a enjambres de animales en la naturaleza a los que se les confiere la habilidad de ejecutar autónomamente la tarea. Los enjambres artificiales están diseñados para ser autónomos, escalables, robustos y adaptables a los cambios en su entorno. En este trabajo, presentamos métodos que explotan una o más de estas características. Primero, validamos la metodología propuesta en un escenario del mundo real visto como un problema de optimización combinatoria. Después, proponemos un conjunto de herramientas noveles para ex-tracción de características, en concreto la detección adaptativa de bordes y el enlazado de bordes rotos en imágenes digitales, y el agrupamiento de datos para segmentación de imágenes. Finalmente, proponemos un algoritmo escalable para la asignación distribuida de tareas en sistemas multi-agente aplicada a enjambres de robots. La metodología general recién propuesta ofrece una guía para futuros desarrolladores deherramientas de Inteligencia de Enjambre

    Sensor-based Collision Avoidance System for the Walking Machine ALDURO

    Get PDF
    This work presents a sensor system develop for the robot ALDURO (Antropomorphically Legged and Wheeled Duisburg Robot), in order to allow it to detect and avoid obstacles when moving in unstructured terrains. The robot is a large-scale hydraulically driven 4-legged walking-machine, developed at the Duisburg-Essen University, with 16 degrees of freedom at each leg and will be steered by an operator sitting in a cab on the robot body. The Cartesian operator instructions are processed by a control computer, which converts them into appropriate autonomous leg movements, what makes necessary that the robot automatically recognizes the obstacles (rock, trunks, holes, etc.) on its way, locates and avoids them. A system based on ultra-sound sensors was developed to carry this task on, but there are intrinsic problems with such sensors, concerning to their poor angular precision. To overcome that, a fuzzy model of the used ultra-sound sensor, based on the characteristics of the real one, was developed to include the uncertainties about the measures. A posterior fuzzy inference builds from the measured data a map of the robot’s surroundings, to be used as input to the navigation system. This whole sensor system was implemented at a test stand, where a real size leg of the robot is fully functional. The sensors are assembled in an I2C net, which uses a micro-controller as interface to the main controller (a personal computer). That enables to relieve the main controller of some data processing, which is carried by the microcontroller on. The sensor system was tested together with the fuzzy data inference, and different arrangements to the sensors and settings of the inference system were tried, in order to achieve a satisfactory result
    corecore