113,017 research outputs found

    Hardness Results for Dynamic Problems by Extensions of Fredman and Saks’ Chronogram Method

    Get PDF
    We introduce new models for dynamic computation based on the cell probe model of Fredman and Yao. We give these models access to nondeterministic queries or the right answer +-1 as an oracle. We prove that for the dynamic partial sum problem, these new powers do not help, the problem retains its lower bound of  Omega(log n/log log n). From these results we easily derive a large number of lower bounds of order Omega(log n/log log n) for conventional dynamic models like the random access machine. We prove lower bounds for dynamic algorithms for reachability in directed graphs, planarity testing, planar point location, incremental parsing, fundamental data structure problems like maintaining the majority of the prefixes of a string of bits and range queries. We characterise the complexity of maintaining the value of any symmetric function on the prefixes of a bit string

    A Static Optimality Transformation with Applications to Planar Point Location

    Full text link
    Over the last decade, there have been several data structures that, given a planar subdivision and a probability distribution over the plane, provide a way for answering point location queries that is fine-tuned for the distribution. All these methods suffer from the requirement that the query distribution must be known in advance. We present a new data structure for point location queries in planar triangulations. Our structure is asymptotically as fast as the optimal structures, but it requires no prior information about the queries. This is a 2D analogue of the jump from Knuth's optimum binary search trees (discovered in 1971) to the splay trees of Sleator and Tarjan in 1985. While the former need to know the query distribution, the latter are statically optimal. This means that we can adapt to the query sequence and achieve the same asymptotic performance as an optimum static structure, without needing any additional information.Comment: 13 pages, 1 figure, a preliminary version appeared at SoCG 201

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    Distance-Sensitive Planar Point Location

    Get PDF
    Let S\mathcal{S} be a connected planar polygonal subdivision with nn edges that we want to preprocess for point-location queries, and where we are given the probability γi\gamma_i that the query point lies in a polygon PiP_i of S\mathcal{S}. We show how to preprocess S\mathcal{S} such that the query time for a point~pPip\in P_i depends on~γi\gamma_i and, in addition, on the distance from pp to the boundary of~PiP_i---the further away from the boundary, the faster the query. More precisely, we show that a point-location query can be answered in time O(min(logn,1+logarea(Pi)γiΔp2))O\left(\min \left(\log n, 1 + \log \frac{\mathrm{area}(P_i)}{\gamma_i \Delta_{p}^2}\right)\right), where Δp\Delta_{p} is the shortest Euclidean distance of the query point~pp to the boundary of PiP_i. Our structure uses O(n)O(n) space and O(nlogn)O(n \log n) preprocessing time. It is based on a decomposition of the regions of S\mathcal{S} into convex quadrilaterals and triangles with the following property: for any point pPip\in P_i, the quadrilateral or triangle containing~pp has area Ω(Δp2)\Omega(\Delta_{p}^2). For the special case where S\mathcal{S} is a subdivision of the unit square and γi=area(Pi)\gamma_i=\mathrm{area}(P_i), we present a simpler solution that achieves a query time of O(min(logn,log1Δp2))O\left(\min \left(\log n, \log \frac{1}{\Delta_{p}^2}\right)\right). The latter solution can be extended to convex subdivisions in three dimensions
    corecore