186 research outputs found

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed
    • …
    corecore