22,662 research outputs found

    O(log2k/loglogk)O(\log^2k/\log\log{k})-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm

    Get PDF
    In the Directed Steiner Tree (DST) problem we are given an nn-vertex directed edge-weighted graph, a root rr, and a collection of kk terminal nodes. Our goal is to find a minimum-cost arborescence that contains a directed path from rr to every terminal. We present an O(log2k/loglogk)O(\log^2 k/\log\log{k})-approximation algorithm for DST that runs in quasi-polynomial-time. By adjusting the parameters in the hardness result of Halperin and Krauthgamer, we show the matching lower bound of Ω(log2k/loglogk)\Omega(\log^2{k}/\log\log{k}) for the class of quasi-polynomial-time algorithms. This is the first improvement on the DST problem since the classical quasi-polynomial-time O(log3k)O(\log^3 k) approximation algorithm by Charikar et al. (The paper erroneously claims an O(log2k)O(\log^2k) approximation due to a mistake in prior work.) Our approach is based on two main ingredients. First, we derive an approximation preserving reduction to the Label-Consistent Subtree (LCST) problem. The LCST instance has quasi-polynomial size and logarithmic height. We remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all prior work on DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of similar height, however losing a logarithmic factor in the approximation ratio. Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances, which is inspired by the framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our rounding algorithm proceeds level by level from the root to the leaves, rounding and conditioning each time on a proper subset of label variables. A small enough (namely, polylogarithmic) number of Sherali-Adams lifting levels is sufficient to condition up to the leaves

    Approximating Directed Steiner Problems via Tree Embedding

    Get PDF
    In the k-edge connected directed Steiner tree (k-DST) problem, we are given a directed graph G on n vertices with edge-costs, a root vertex r, a set of h terminals T and an integer k. The goal is to find a min-cost subgraph H of G that connects r to each terminal t by k edge-disjoint r,t-paths. This problem includes as special cases the well-known directed Steiner tree (DST) problem (the case k = 1) and the group Steiner tree (GST) problem. Despite having been studied and mentioned many times in literature, e.g., by Feldman et al. [SODA'09, JCSS'12], by Cheriyan et al. [SODA'12, TALG'14] and by Laekhanukit [SODA'14], there was no known non-trivial approximation algorithm for k-DST for k >= 2 even in the special case that an input graph is directed acyclic and has a constant number of layers. If an input graph is not acyclic, the complexity status of k-DST is not known even for a very strict special case that k= 2 and |T| = 2. In this paper, we make a progress toward developing a non-trivial approximation algorithm for k-DST. We present an O(D k^{D-1} log n)-approximation algorithm for k-DST on directed acyclic graphs (DAGs) with D layers, which can be extended to a special case of k-DST on "general graphs" when an instance has a D-shallow optimal solution, i.e., there exist k edge-disjoint r,t-paths, each of length at most D, for every terminal t. For the case k= 1 (DST), our algorithm yields an approximation ratio of O(D log h), thus implying an O(log^3 h)-approximation algorithm for DST that runs in quasi-polynomial-time (due to the height-reduction of Zelikovsky [Algorithmica'97]). Consequently, as our algorithm works for general graphs, we obtain an O(D k^{D-1} log n)-approximation algorithm for a D-shallow instance of the k-edge-connected directed Steiner subgraph problem, where we wish to connect every pair of terminals by k-edge-disjoint paths

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Dial a Ride from k-forest

    Full text link
    The k-forest problem is a common generalization of both the k-MST and the dense-kk-subgraph problems. Formally, given a metric space on nn vertices VV, with mm demand pairs V×V\subseteq V \times V and a ``target'' kmk\le m, the goal is to find a minimum cost subgraph that connects at least kk demand pairs. In this paper, we give an O(min{n,k})O(\min\{\sqrt{n},\sqrt{k}\})-approximation algorithm for kk-forest, improving on the previous best ratio of O(n2/3logn)O(n^{2/3}\log n) by Segev & Segev. We then apply our algorithm for k-forest to obtain approximation algorithms for several Dial-a-Ride problems. The basic Dial-a-Ride problem is the following: given an nn point metric space with mm objects each with its own source and destination, and a vehicle capable of carrying at most kk objects at any time, find the minimum length tour that uses this vehicle to move each object from its source to destination. We prove that an α\alpha-approximation algorithm for the kk-forest problem implies an O(αlog2n)O(\alpha\cdot\log^2n)-approximation algorithm for Dial-a-Ride. Using our results for kk-forest, we get an O(min{n,k}log2n)O(\min\{\sqrt{n},\sqrt{k}\}\cdot\log^2 n)- approximation algorithm for Dial-a-Ride. The only previous result known for Dial-a-Ride was an O(klogn)O(\sqrt{k}\log n)-approximation by Charikar & Raghavachari; our results give a different proof of a similar approximation guarantee--in fact, when the vehicle capacity kk is large, we give a slight improvement on their results.Comment: Preliminary version in Proc. European Symposium on Algorithms, 200

    The word and geodesic problems in free solvable groups

    No full text
    corecore