20 research outputs found

    Permutation polynomials and applications to coding theory

    Get PDF
    AbstractWe present different results derived from a theorem stated by Wan and Lidl [Permutation polynomials of the form xrf(x(q-1)/d) and their group structure, Monatsh. Math. 112(2) (1991) 149–163] which treats specific permutations on finite fields. We first exhibit a new class of permutation binomials and look at some interesting subclasses. We then give an estimation of the number of permutation binomials of the form Xr(X(q-1)/m+a) for a∈Fq*. Finally we give applications in coding theory mainly related to a conjecture of Helleseth

    Some Proposed Problems on Permutation Polynomials over Finite Fields

    Get PDF
    From the 19th century, the theory of permutation polynomial over finite fields, that are arose in the work of Hermite and Dickson, has drawn general attention. Permutation polynomials over finite fields are an active area of research due to their rising applications in mathematics and engineering. The last three decades has seen rapid progress on the research on permutation polynomials due to their diverse applications in cryptography, coding theory, finite geometry, combinatorics and many more areas of mathematics and engineering. For this reason, the study of permutation polynomials is important nowadays. In this chapter, we propose some new problems in connection to permutation polynomials over finite fields by the help of prime numbers

    A recent survey of permutation trinomials over finite fields

    Get PDF
    Constructing permutation polynomials is a hot topic in the area of finite fields, and permutation polynomials have many applications in different areas. Recently, several classes of permutation trinomials were constructed. In 2015, Hou surveyed the achievements of permutation polynomials and novel methods. But, very few were known at that time. Recently, many permutation binomials and trinomials have been constructed. Here we survey the significant contribution made to the construction of permutation trinomials over finite fields in recent years. Emphasis is placed on significant results and novel methods. The covered material is split into three aspects: the existence of permutation trinomials of the respective forms xrh(xs) x^{r}h(x^{s}) , λ1xa+λ2xb+λ3xc \lambda_{1}x^{a}+\lambda_{2}x^{b}+\lambda_{3}x^{c} and x+xs(qm−1)+1+xt(qm−1)+1 x+x^{s(q^{m}-1)+1} +x^{t(q^{m}-1)+1} , with Niho-type exponents s,t s, t

    Part I:

    Get PDF

    Covering Radius 1985-1994

    Get PDF
    We survey important developments in the theory of covering radius during the period 1985-1994. We present lower bounds, constructions and upper bounds, the linear and nonlinear cases, density and asymptotic results, normality, specific classes of codes, covering radius and dual distance, tables, and open problems

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree ≤r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code C′C', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then C′C' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Codes, arrangements, matroids, and their polynomial links

    Get PDF
    Codes, arrangements, matroids, and their polynomial links Many mathematical objects are closely related to each other. While studying certain aspects of a mathematical object, one tries to find a way to "view" the object in a way that is most suitable for a specific problem. Or, in other words, one tries to find the best way to model the problem. Many related fields of mathematics have evolved from one another this way. In practice, it is very useful to be able to transform a problem into other terminology: it gives a lot more available knowledge and that can be helpful to solve a problem. This thesis deals with various closely related fields in discrete mathematics, starting from linear error-correcting codes and their weight enumerator. We can generalize the weight enumerator in two ways, to the extended and generalized weight enumerators. The set of generalized weight enumerators is equivalent to the extended weight enumerator. Summarizing and extending known theory, we define the two-variable zeta polynomial of a code and its generalized zeta polynomial. These polynomials are equivalent to the extended and generalized weight enumerator of a code. We can determine the extended and generalized weight enumerator using projective systems. This calculation is explicitly done for codes coming from finite projective and affine spaces: these are the simplex code and the first order Reed-Muller code. As a result we do not only get the weight enumerator of these codes, but it also gives us information on their geometric structure. This is useful information in determining the dimension of geometric designs. To every linear code we can associate a matroid that is representable over a finite field. A famous and well-studied polynomial associated to matroids is the Tutte polynomial, or rank generating function. It is equivalent to the extended weight enumerator. This leads to a short proof of the MacWilliams relations for the extended weight enumerator. For every matroid, its flats form a geometric lattice. On the other hand, every geometric lattice induces a simple matroid. The Tutte polynomial of a matroid determines the coboundary polynomial of the associated geometric lattice. In the case of simple matroids, this becomes a two-way equivalence. Another polynomial associated to a geometric lattice (or, more general, to a poset) is the Möbius polynomial. It is not determined by the coboundary polynomial, neither the other way around. However, we can give conditions under which the Möbius polynomial of a simple matroid together with the Möbius polynomial of its dual matroid defines the coboundary polynomial. The proof of these relations involves the two-variable zeta polynomial, that can be generalized from codes to matroids. Both matroids and geometric lattices can be truncated to get an object of lower rank. The truncated matroid of a representable matroid is again representable. Truncation formulas exist for the coboundary and Möbius polynomial of a geometric lattice and the spectrum polynomial of a matroid, generalizing the known truncation formula of the Tutte polynomial of a matroid. Several examples and counterexamples are given for all the theory. To conclude, we give an overview of all polynomial relations
    corecore