5,009 research outputs found

    Solcore: A multi-scale, python-based library for modelling solar cells and semiconductor materials

    Full text link
    Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.Comment: 25 pages, 18 figures, Journal of Computational Electronics (2018

    Employee attitudes as a mediator between HRM and organizational performance

    Get PDF
    Attitude is a power that controls human behaviour. When employee Attitude is positive, it can give impact positive to organization performance. A proper human resource management (HRM) managed by organization, the employee attitude will be affected. HRM practices influence employee attitude positively and there is a mediating role of employee attitude between training and development dimension of HRM practices and organizational performance. Therefore, the purpose of this study is to explore employee atttiude as a mediator between HRM and organizational performance. A sample of this study was 219 respondents from employee construction in Libya. The data was analyzed using structural equation modelling (SEM) approach. This study showed that employee attitudes is a full mediator between relationship HRM and organizational performance. Therefore, HRM practices influence employee attitude and its give impact to organizational performance for more effective and efficient in achieving organization goal

    Distributed Simulation of Real Tunnel Junction Effects in Multi-Junction Solar Cells

    Full text link
    In this paper, we present an improved 3D distributed model that considers real operation regimes in a tunnel junction. This advanced method is able to accurately simulate the high concentrations at which the current in the solar cell surpasses the peak current of the tunnel junction. Simulations of dual-junction solar cells were carried out with different light profiles and including chromatic aberration to show the capabilities of the model. Such simulations show that, under some circumstances, the solar cell short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading towards the dark regions, which occurs through the anode region of the tunnel junction

    Solar And Fuel Cell Circuit Modeling, Analysis And Integrations With Power Conversion Circuits For Distributed Generation

    Get PDF
    Renewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to perform a detailed analysis and modeling of Solar and Fuel cells using Cadence SPICE, and to investigate dynamic interactions between the modules and power conversion circuits. Equivalent electronic static and dynamic models for Solar and Fuel Cells, their electrical characteristics, and typical power loss mechanisms associated with them are demonstrated with simulation results. Power conversion circuits for integration with the dynamic models of these renewable low voltage sources are specifically chosen to boost and regulate the input low dc voltage from the modules. The scope of this work was to analyze and model solar and fuel cells to study their terminal characteristics, power loss mechanisms, modules and their dynamics when interfaced with power converters, which would lead to better understanding of these renewable sources in power applications

    Accelerated spatially resolved electrical simulation of photovoltaic devices using photovoltaic-oriented nodal analysis

    Get PDF
    This paper presents photovoltaic-oriented nodal analysis (PVONA), a general and flexible tool for efficient spatially resolved simulations for photovoltaic (PV) cells and modules. This approach overcomes the major problem of the conventional Simulation Program with Integrated Circuit Emphasis-based approaches for solving circuit network models, which is the limited number of nodes that can be simulated due to memory and computing time requirements. PVONA integrates a specifically designed sparse data structure and a graphics processing unit-based parallel conjugate gradient algorithm into a PV-oriented iterative Newton--Raphson solver. This first avoids the complicated and time-consuming netlist parsing, second saves memory space, and third accelerates the simulation procedure. In the tests, PVONA generated the local current and voltage maps of a model with 316 x 316 nodes with a thin-film PV cell in 15 s, i.e., using only 4.6% of the time required by the latest LTSpice package. The 2-D characterization is used as a case study and the potential application of PVONA toward quantitative analysis of electroluminescence are discussed

    Fault Resilient and Reconfigurable Power Management Using Photovoltaic Integrated with CMOS Switches

    Get PDF
    A Photovoltaic (PV) cell is a device which converts light incident upon it to electric current. The push for green energy due to global warming and diminution of fossil fuels opens up a huge market for PV cells. Hence, a lot of interest is being garnered for using PV cells for various applications. However, a PV module\u27s performance degrades due to many anomalies such as failure of individual PV cell within a module, the opening of interconnection, a short circuit in the connection, failure of bypass diode, failure in voltage regulator or partial shading. To some extent all of these issues can be addressed by introducing a transistor as a switch in a PV module. This kind of architecture also enables the PV module to switch between high voltage with low current or high current with low voltage. Moreover, such architecture is handy when PV modules are deployed at remote locations where manual intervention in the case of fault or power management becomes too expensive or impossible. With advancements in semiconductor processing, the MOSFET switches can now be integrated with a PV cell for improved reliability. In this research project, we introduced addressable switches for PV cell that enable the creation of real-time reconfigurable power buses or power island. Moreover, for PV module deployed at a remote location, we have installed an architecture that let the PV module self-detect faulty PV cells or partial shading condition. Such algorithms detect faulty PV cells or PV cells under partial shading within the module such that the performance of the PV module does not become degraded. The algorithms actively use an embedded computing device to predict the output power based on a number of PV cells connected in series and parallel; then the computed power is compared with the measured power for faulty condition detection. Typically, for achieving such kind of computing architecture a single-diode based PV module modeling technique is used. However, all of these modeling techniques have an exponential term due to the presence of a diode, the computing of output power and performance of PV module becomes power intensive and it is difficult to implement on an embedded system. Also, due to the presence of the exponential term, there is no closed form solution for IPV versus VPV (output current of PV cell versus output voltage of a PV cell). We have introduced a PV module modeling using an N-channel MOSFET transistor that doesn\u27t have an exponential term. Moreover, a quadratic equation based solution is obtained that can be solved for calculating the load current. Using the same technique PV module can be also be modeled for various configuration. Additionally, with MOSFET based PV cells modeling enables the modeling CMOS-with-PV which is also presented in this work

    Cakar ayam shaping machine

    Get PDF
    Cakar ayam (Figure 7.1) is one of the Malay traditional cookies that are made from sliced sweet potatoes deep-fried in the coconut candy. In current practice of moulding the cookies, the fried sweet potatoes are molded using traditional manual tools, which are inefficient and less productive for the mass production purposes. “Kuih cakar ayam” associated with the meaning of the idiom means less messy handwriting has a somewhat negative connotation .This cookies may just seem less attractive in shape but still likeable . In fact, this cookie is considered a popular snack even outside the holiday season. The choice of the name of this cookie is more to shape actually resembles former chicken scratches made by the paw the ground while foraging. The value of wisdom, beauty and creativity of the Malays is clearly evident through the Malay cookie. Although it is attacked by the invention of modern cakes that look far more interesting, these cakes will be able to survive a long time until now

    Accelerated degradation of silicon metallization systems

    Get PDF
    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing

    Fast spatially-resolved electrical modelling and quantitative characterisation of photovoltaic devices

    Get PDF
    An efficient and flexible modelling and simulation toolset for solving spatially-resolved models of photovoltaic (PV) devices is developed, and its application towards a quantitative description of localised electrical behaviour is given. A method for the extraction of local electrical device parameters is developed as a complementary approach to the conventional characterisation techniques based on lumped models to meet the emerging demands of quantitative spatially-resolved characterisation in the PV community. It allows better understanding of the effects of inhomogeneities on performance of PV devices. The simulation tool is named PV-Oriented Nodal Analysis (PVONA). This is achieved by integrating a specifically designed sparse data structure and a graphics processing unit (GPU)-based parallel conjugate gradient algorithm into a PV-oriented numerical solver. It allows more efficient high-resolution spatially-resolved modelling and simulations of PV devices than conventional approaches based on SPICE (Simulation Program with Integrated Circuit Emphasis) tools in terms of computation time and memory usage. In tests, mega-sub-cell level test cases failed in the latest LTSpice version (v4.22) and a PSpice version (v16.6) on desktop PCs with mainstream hardware due to a memory shortage. PVONA efficiently managed to solve the models. Moreover, it required up to only 5% of the time comparing the two SPICE counterparts. This allows the investigation of inhomogeneities and fault mechanisms in PV devices with high resolution on common computing platforms. The PVONA-based spatially-resolved modelling and simulation is used in various purposes. As an example, it is utilised to evaluate the impacts of nonuniform illumination profiles in a concentrator PV unit. A joint optical and electrical modelling framework is presented. Simulation results suggest that uncertainties introduced during the manufacturing and assembly of the optical components can significantly affect the performance of the system in terms of local voltage and current distribution and global current-voltage characteristics. Significant series resistance and shunt resistance effects are found to be caused by non-uniformity irradiance profiles and design parameters of PV cells. The potential of utilising PVONA as a quality assessment tool for system design is discussed. To achieve quantitative characterisation, the PVONA toolset is then used for developing a 2-D iterative method for the extraction of local electrical parameters of spatially-resolved models of thin-film devices. The method employs PVONA to implement 2-D fitting to reproduce the lateral variations in electroluminescence (EL) images, and to match the dark current-voltage characteristic simultaneously to compensate the calibration factor in EL characterisations. It managed to separate the lateral resistance from the overall series resistance effects. The method is verified by simulations. Experimental results show that pixellation of EL images can be achieved. Effects of local shunts are accurately reproduced by a fitting algorithm. The outcomes of this thesis provide valuable tools that can be used as a complementary means of performance evaluation of PV devices. After proper optimisation, these tools can be used to assist various analysis tasks during the whole lifecycle of PV products
    • 

    corecore