1,633 research outputs found

    New metrics for prioritized interaction test suites

    Get PDF
    Combinatorial interaction testing has been well studied in recent years, and has been widely applied in practice. It generally aims at generating an effective test suite (an interaction test suite) in order to identify faults that are caused by parameter interactions. Due to some constraints in practical applications (e.g. limited testing resources), for example in combinatorial interaction regression testing, prioritized interaction test suites (called interaction test sequences) are often employed. Consequently, many strategies have been proposed to guide the interaction test suite prioritization. It is, therefore, important to be able to evaluate the different interaction test sequences that have been created by different strategies. A well-known metric is the Average Percentage of Combinatorial Coverage (shortly APCCλ), which assesses the rate of interaction coverage of a strength λ (level of interaction among parameters) covered by a given interaction test sequence S. However, APCCλ has two drawbacks: firstly, it has two requirements (that all test cases in S be executed, and that all possible λ-wise parameter value combinations be covered by S); and secondly, it can only use a single strength λ (rather than multiple strengths) to evaluate the interaction test sequence - which means that it is not a comprehensive evaluation. To overcome the first drawback, we propose an enhanced metric Normalized APCCλ (NAPCC) to replace the APCCλ Additionally, to overcome the second drawback, we propose three new metrics: the Average Percentage of Strengths Satisfied (APSS); the Average Percentage of Weighted Multiple Interaction Coverage (APWMIC); and the Normalized APWMIC (NAPWMIC). These metrics comprehensively assess a given interaction test sequence by considering different interaction coverage at different strengths. Empirical studies show that the proposed metrics can be used to distinguish different interaction test sequences, and hence can be used to compare different test prioritization strategies

    Prioritization of combinatorial test cases by incremental interaction coverage

    Get PDF
    Combinatorial testing is a well-recognized testing method, and has been widely applied in practice. To facilitate analysis, a common approach is to assume that all test cases in a combinatorial test suite have the same fault detection capability. However, when testing resources are limited, the order of executing the test cases is critical. To improve testing cost-effectiveness, prioritization of combinatorial test cases is employed. The most popular approach is based on interaction coverage, which prioritizes combinatorial test cases by repeatedly choosing an unexecuted test case that covers the largest number on uncovered parameter value combinations of a given strength (level of interaction among parameters). However, this approach suffers from some drawbacks. Based on previous observations that the majority of faults in practical systems can usually be triggered with parameter interactions of small strengths, we propose a new strategy of prioritizing combinatorial test cases by incrementally adjusting the strength values. Experimental results show that our method performs better than the random prioritization technique and the technique of prioritizing combinatorial test suites according to test case generation order, and has better performance than the interaction-coverage-based test prioritization technique in most cases

    A Comparison of Test Case Prioritization Criteria for Software Product Lines

    Get PDF
    Software Product Line (SPL) testing is challenging due to the potentially huge number of derivable products. To alleviate this problem, numerous contributions have been proposed to reduce the number of products to be tested while still having a good coverage. However, not much attention has been paid to the order in which the products are tested. Test case prioritization techniques reorder test cases to meet a certain performance goal. For instance, testers may wish to order their test cases in order to detect faults as soon as possible, which would translate in faster feedback and earlier fault correction. in this paper, we explore the applicability of test case prioritization techniques to SPL testing. We propose five different prioritization criteria based on common metrics of feature models and we compare their effectiveness in increasing the rate of early fault detection, i.e. a measure of how quickly faults are detected. The results show that different orderings of the same SPL suite may lead to significant differences in the rate of early fault detection. They also show that our approach may contribute to accelerate the detection of faults of SPL test suites based on combinatorial testingMinisterio de Ciencia e Innovación TIN2009-07366 (SETI)Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía P10-TIC-590

    Test suite prioritization techniques applied to Web-based applications

    Full text link
    Web applications have rapidly gained importance in many businesses. The increased usage of web applications has created a challenging need for efficient and effective web application testing strategies. This thesis examines one aspect of web testing, that of test suite prioritization. We examine new test suite prioritization strategies that may improve the rate of fault detection for user-session based test suites. These techniques consider test-lengths and systematic coverage of parameter-values and their interactions. Experimental results show that some of these prioritization strategies often improve the rate of fault detection of test suites when compared to random ordering of the test cases. In general the most effective prioritization strategies consider the systematic coverage of the combinations of parameter-values as early as possible

    Aggregate-strength interaction test suite prioritization

    Get PDF
    Combinatorial interaction testing is a widely used approach. In testing, it is often assumed that all combinatorial test cases have equal fault detection capability, however it has been shown that the execution order of an interaction test suite's test cases may be critical, especially when the testing resources are limited. To improve testing cost-effectiveness, test cases in the interaction test suite can be prioritized, and one of the best-known categories of prioritization approaches is based on “fixed-strength prioritization”, which prioritizes an interaction test suite by choosing new test cases which have the highest uncovered interaction coverage at a fixed strength (level of interaction among parameters). A drawback of these approaches, however, is that, when selecting each test case, they only consider a fixed strength, not multiple strengths. To overcome this, we propose a new “aggregate-strength prioritization”, to combine interaction coverage at different strengths. Experimental results show that in most cases our method performs better than the test-case-generation, reverse test-case-generation, and random prioritization techniques. The method also usually outperforms “fixed-strength prioritization”, while maintaining a similar time cost

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC

    Quality-Aware Learning to Prioritize Test Cases

    Get PDF
    Software applications evolve at a rapid rate because of continuous functionality extensions, changes in requirements, optimization of code, and fixes of faults. Moreover, modern software is often composed of components engineered with different programming languages by different internal or external teams. During this evolution, it is crucial to continuously detect unintentionally injected faults and continuously release new features. Software testing aims at reducing this risk by running a certain suite of test cases regularly or at each change of the source code. However, the large number of test cases makes it infeasible to run all test cases. Automated test case prioritization and selection techniques have been studied in order to reduce the cost and improve the efficiency of testing tasks. However, the current state-of-art techniques remain limited in some aspects. First, the existing test prioritization and selection techniques often assume that faults are equally distributed across the software components, which can lead to spending most of the testing budget on components less likely to fail rather than the ones highly to contain faults. Second, the existing techniques share a scalability problem not only in terms of the size of the selected test suite but also in terms of the round-trip time between code commits and engineer feedback on test cases failures in the context of Continuous Integration (CI) development environments. Finally, it is hard to algorithmically capture the domain knowledge of the human testers which is crucial in testing and release cycles. This thesis is a new take on the old problem of reducing the cost of software testing in these regards by presenting a data-driven lightweight approach for test case prioritization and execution scheduling that is being used (i) during CI cycles for quick and resource-optimal feedback to engineers, and (ii) during release planning by capturing the testers domain knowledge and release requirements. Our approach combines software quality metrics with code churn metrics to build a regressive model that predicts the fault density of each component and a classification model to discriminate faulty from non-faulty components. Both models are used to guide the testing effort to the components likely to contain the largest number of faults. The predictive models have been validated on eight industrial automotive software applications at Daimler, showing a classification accuracy of 89% and an accuracy of 85.7% for the regression model. The thesis develops a test cases prioritization model based on features of the code change, the tests execution history and the component development history. The model reduces the cost of CI by predicting whether a particular code change should trigger the individual test suites and their corresponding test cases. In order to algorithmically capture the domain knowledge and the preferences of the tester, our approach developed a test case execution scheduling model that consumes the testers preferences in the form of a probabilistic graph and solves the optimal test budget allocation problem both online in the context of CI cycles and offline when planning a release. Finally, the thesis presents a theoretical cost model that describes when our prioritization and scheduling approach is worthwhile. The overall approach is validated on two industrial analytical applications in the area of energy management and predictive maintenance, showing that over 95% of the test failures are still reported back to the engineers while only 43% of the total available test cases are being executed

    Quality-Aware Learning to Prioritize Test Cases

    Get PDF
    Software applications evolve at a rapid rate because of continuous functionality extensions, changes in requirements, optimization of code, and fixes of faults. Moreover, modern software is often composed of components engineered with different programming languages by different internal or external teams. During this evolution, it is crucial to continuously detect unintentionally injected faults and continuously release new features. Software testing aims at reducing this risk by running a certain suite of test cases regularly or at each change of the source code. However, the large number of test cases makes it infeasible to run all test cases. Automated test case prioritization and selection techniques have been studied in order to reduce the cost and improve the efficiency of testing tasks. However, the current state-of-art techniques remain limited in some aspects. First, the existing test prioritization and selection techniques often assume that faults are equally distributed across the software components, which can lead to spending most of the testing budget on components less likely to fail rather than the ones highly to contain faults. Second, the existing techniques share a scalability problem not only in terms of the size of the selected test suite but also in terms of the round-trip time between code commits and engineer feedback on test cases failures in the context of Continuous Integration (CI) development environments. Finally, it is hard to algorithmically capture the domain knowledge of the human testers which is crucial in testing and release cycles. This thesis is a new take on the old problem of reducing the cost of software testing in these regards by presenting a data-driven lightweight approach for test case prioritization and execution scheduling that is being used (i) during CI cycles for quick and resource-optimal feedback to engineers, and (ii) during release planning by capturing the testers domain knowledge and release requirements. Our approach combines software quality metrics with code churn metrics to build a regressive model that predicts the fault density of each component and a classification model to discriminate faulty from non-faulty components. Both models are used to guide the testing effort to the components likely to contain the largest number of faults. The predictive models have been validated on eight industrial automotive software applications at Daimler, showing a classification accuracy of 89% and an accuracy of 85.7% for the regression model. The thesis develops a test cases prioritization model based on features of the code change, the tests execution history and the component development history. The model reduces the cost of CI by predicting whether a particular code change should trigger the individual test suites and their corresponding test cases. In order to algorithmically capture the domain knowledge and the preferences of the tester, our approach developed a test case execution scheduling model that consumes the testers preferences in the form of a probabilistic graph and solves the optimal test budget allocation problem both online in the context of CI cycles and offline when planning a release. Finally, the thesis presents a theoretical cost model that describes when our prioritization and scheduling approach is worthwhile. The overall approach is validated on two industrial analytical applications in the area of energy management and predictive maintenance, showing that over 95% of the test failures are still reported back to the engineers while only 43% of the total available test cases are being executed
    corecore