41,308 research outputs found

    Identifying lineage effects when controlling for population structure improves power in bacterial association studies

    Get PDF
    Bacteria pose unique challenges for genome-wide association studies because of strong structuring into distinct strains and substantial linkage disequilibrium across the genome1,2. Although methods developed for human studies can correct for strain structure3,4, this risks considerable loss-of-power because genetic differences between strains often contribute substantial phenotypic variability5. Here, we propose a new method that captures lineage-level associations even when locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, recombination and penetrance confer high power to recover known antimicrobial resistance mechanisms and reveal a candidate association between the outer membrane porin nmpC and cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible and boosts power by detecting lineage-level differences when fine-mapping is intractable

    An HMM-based Comparative Genomic Framework for Detecting Introgression in Eukaryotes

    Full text link
    One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on a new comparative genomic framework for detecting introgression in genomes, called PhyloNet-HMM, which combines phylogenetic networks, that capture reticulate evolutionary relationships among genomes, with hidden Markov models (HMMs), that capture dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detects a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgression regions. Based on our analysis, it is estimated that about 12% of all sites withinchromosome 7 are of introgressive origin (these cover about 18 Mbp of chromosome 7, and over 300 genes). Further, our model detects no introgression in two negative control data sets. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism

    Detecting patterns of species diversification in the presence of both rate shifts and mass extinctions

    Get PDF
    Recent methodological advances are enabling better examination of speciation and extinction processes and patterns. A major open question is the origin of large discrepancies in species number between groups of the same age. Existing frameworks to model this diversity either focus on changes between lineages, neglecting global effects such as mass extinctions, or focus on changes over time which would affect all lineages. Yet it seems probable that both lineages differences and mass extinctions affect the same groups. Here we used simulations to test the performance of two widely used methods, under complex scenarios. We report good performances, although with a tendency to over-predict events when increasing the complexity of the scenario. Overall, we find that lineage shifts are better detected than mass extinctions. This work has significance for assessing the methods currently used for estimating changes in diversification using phylogenies and developing new tests.Comment: 34 pages, 11 figure

    Molecular footprint of drug-selective pressure in a human immunodeficiency virus transmission chain

    Get PDF
    Known human immunodeficiency virus (HIV) transmission histories are invaluable models for investigating the evolutionary and transmission dynamics of the virus and to assess the accuracy of phylogenetic reconstructions. Here we have characterized an HIV-1 transmission chain consisting of nine infected patients, almost all of whom were treated with antiviral drugs at later stages of infection. Partial pol and env gp41 regions of the HIV genome were directly sequenced from plasma viral RNA for at least one sample from each patient. Phylogenetic analyses in pol using likelihood methods inferred an evolutionary history not fully compatible with the known transmission history. This could be attributed to parallel evolution of drug resistance mutations resulting in the incorrect clustering of multidrug-resistant virus. On the other hand, a fully compatible phylogenetic tree was reconstructed from the env sequences. We were able to identify and quantify the molecular footprint of drug-selective pressure in pol using maximum likelihood inference under different codon substitution models. An increased fixation rate of mutations in the HIV population of the multidrug-resistant patient was demonstrated using molecular clock modeling. We show that molecular evolutionary analyses, guided by a known transmission history, can reveal the presence of confounding factors like natural selection and caution should be taken when accurate descriptions of HIV evolution are required.status: publishe

    Segmentally Variable Genes: A New Perspective on Adaptation

    Get PDF
    Genomic sequence variation is the hallmark of life and is key to understanding diversity and adaptation among the numerous microorganisms on earth. Analysis of the sequenced microbial genomes suggests that genes are evolving at many different rates. We have attempted to derive a new classification of genes into three broad categories: lineage-specific genes that evolve rapidly and appear unique to individual species or strains; highly conserved genes that frequently perform housekeeping functions; and partially variable genes that contain highly variable regions, at least 70 amino acids long, interspersed among well-conserved regions. The latter we term segmentally variable genes (SVGs), and we suggest that they are especially interesting targets for biochemical studies. Among these genes are ones necessary to deal with the environment, including genes involved in hostā€“pathogen interactions, defense mechanisms, and intracellular responses to internal and environmental changes. For the most part, the detailed function of these variable regions remains unknown. We propose that they are likely to perform important binding functions responsible for proteinā€“protein, proteinā€“nucleic acid, or proteinā€“small molecule interactions. Discerning their function and identifying their binding partners may offer biologists new insights into the basic mechanisms of adaptation, context-dependent evolution, and the interaction between microbes and their environment. Segmentally variable genes show a mosaic pattern of one or more rapidly evolving, variable regions. Discerning their function may provide new insights into the forces that shape genome diversity and adaptationNational Science Foundation (998088, 0239435

    Detection of lineage-specific evolutionary changes among primate species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of the human genome with other primates offers the opportunity to detect evolutionary events that created the diverse phenotypes among the primate species. Because the primate genomes are highly similar to one another, methods developed for analysis of more divergent species do not always detect signs of evolutionary selection.</p> <p>Results</p> <p>We have developed a new method, called DivE, specifically designed to find regions that have evolved either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have potentially undergone positive selection in one or more primate species. Most of these regions occur outside of protein-coding genes, although we identified 20 proteins that have experienced positive selection.</p> <p>Conclusions</p> <p>DivE provides an easy-to-use method to predict both positive and negative selection in noncoding DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes.</p

    Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus

    Get PDF
    Background: Evolutionary studies of genes that mediate recognition between sperm and egg contribute to our understanding of reproductive isolation and speciation. Surface receptors involved in fertilization are targets of sexual selection, reinforcement, and other evolutionary forces including positive selection. This observation was made across different lineages of the eukaryotic tree from land plants to mammals, and is particularly evident in free-spawning animals. Here we use the brown algal model species Ectocarpus (Phaeophyceae) to investigate the evolution of candidate gamete recognition proteins in a distant major phylogenetic group of eukaryotes. Results: Male gamete specific genes were identified by comparing transcriptome data covering different stages of the Ectocarpus life cycle and screened for characteristics expected from gamete recognition receptors. Selected genes were sequenced in a representative number of strains from distant geographical locations and varying stages of reproductive isolation, to search for signatures of adaptive evolution. One of the genes (Esi0130_0068) showed evidence of selective pressure. Interestingly, that gene displayed domain similarities to the receptor for egg jelly (REJ) protein involved in sperm-egg recognition in sea urchins. Conclusions: We have identified a male gamete specific gene with similarity to known gamete recognition receptors and signatures of adaptation. Altogether, this gene could contribute to gamete interaction during reproduction as well as reproductive isolation in Ectocarpus and is therefore a good candidate for further functional evaluation
    • ā€¦
    corecore