65,776 research outputs found

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    The extraction of the new components from electrogastrogram (EGG), using both adaptive filtering and electrocardiographic (ECG) derived respiration signal

    Get PDF
    Electrogastrographic examination (EGG) is a noninvasive method for an investigation of a stomach slow wave propagation. The typical range of frequency for EGG signal is from 0.015 to 0.15 Hz or (0.015–0.3 Hz) and the signal usually is captured with sampling frequency not exceeding 4 Hz. In this paper a new approach of method for recording the EGG signals with high sampling frequency (200 Hz) is proposed. High sampling frequency allows collection of signal, which includes not only EGG component but also signal from other organs of the digestive system such as the duodenum, colon as well as signal connected with respiratory movements and finally electrocardiographic signal (ECG). The presented method allows improve the quality of analysis of EGG signals by better suppress respiratory disturbance and extract new components from high sampling electrogastrographic signals (HSEGG) obtained from abdomen surface. The source of the required new signal components can be inner organs such as the duodenum and colon. One of the main problems that appear during analysis the EGG signals and extracting signal components from inner organs is how to suppress the respiratory components. In this work an adaptive filtering method that requires a reference signal is proposed.Electrogastrographic examination (EGG) is a noninvasive method for an investigation of a stomach slow wave propagation. The typical range of frequency for EGG signal is from 0.015 to 0.15 Hz or (0.015–0.3 Hz) and the signal usually is captured with sampling frequency not exceeding 4 Hz. In this paper a new approach of method for recording the EGG signals with high sampling frequency (200 Hz) is proposed. High sampling frequency allows collection of signal, which includes not only EGG component but also signal from other organs of the digestive system such as the duodenum, colon as well as signal connected with respiratory movements and finally electrocardiographic signal (ECG). The presented method allows improve the quality of analysis of EGG signals by better suppress respiratory disturbance and extract new components from high sampling electrogastrographic signals (HSEGG) obtained from abdomen surface. The source of the required new signal components can be inner organs such as the duodenum and colon. One of the main problems that appear during analysis the EGG signals and extracting signal components from inner organs is how to suppress the respiratory components. In this work an adaptive filtering method that requires a reference signal is proposed
    corecore