2,259 research outputs found

    Automated algorithm-driven methods of localising drivers of persistent atrial fibrillation using atrial fibrillation cycle length and atrial fibrillation voltage

    Get PDF
    The assessment of atrial fibrillation cycle length has played a role in the development of atrial fibrillation ablation by pulmonary vein isolation (PVI) and has also been used to assess response to ablation. Areas of rapid rotational activity in the left atrium have been implied to act as drivers of persistent atrial fibrillation and several methods have been developed to identify these potential drivers. Unprocessed atrial fibrillation electrograms show large variation in cycle length and signal amplitude. Current methods of localising driver regions rely on complex pattern recognition and subjective assessment of operators. The main hypotheses of this thesis were as follows: 1) a technique can be developed to ascertain a clinically relevant, dominant cycle length for any AF segment, 2) the automated technique, can be used to map rapid and regular activity in the left atrium, 3) a patient-tailored definition of rapid activity and low AF voltage, calculated based on patient-specific parameters is feasible; 4) paired with automated low voltage substrate analysis, dominant cycle length analysis is able to provide a framework for localising drivers of AF that is objective, transparent and requires no complex pattern recognition of subjective judgement. To test the hypotheses, a technique was developed based on manual annotation of real-world AF electrograms that was able to ascertain cycle length independent of missing segments or variable cycle length or signal amplitude. Following this, an automated algorithm was validated to determine dominant cycle length. In the following chapter, the nature of AF cycle length was investigated by investigating the patterns of rapid activity with extended AF segments and the concept of patient-tailored definitions of rapid activity was introduced. In the subsequent analysis, the effect of PVI was examined on AF voltage and the AF cycle length, focusing on rapid and regular areas and low voltage zones, and their changes. The last chapter utilised the accumulated information to test the sensitivity and specificity of a percentile-based, patient-tailored approach to low AF voltage and to present an objective, automated method of localising rapid and regular areas within low voltage zones within the left atrium. In summary, it is feasible to assess and locate rapid and regular areas, and localise low voltage zones in persistent AF with a completely automated algorithm, and patient-tailored definitions of low voltage rapid AF activity are a preferable alternative to absolute cut offs.Open Acces

    Endocardial activation mapping of human atrial fibrillation

    Get PDF
    Successful ablation of arrhythmias depends upon interpretation of the mechanism. However, in persistent atrial fibrillation (AF) ablation is currently directed towards the mechanism that initiates paroxysmal AF. We sought to address the hypothesis that atrial activation patterns during persistent AF may help determine the underlying mechanism. Activation mapping of AF wavefronts is labor intensive and often restricted to short time segments in limited atrial locations. RETRO-Mapping was developed to identify uniform wavefronts that occur during AF, and summate all wavefront vectors on to an orbital plot. Uniform wavefronts were mapped using RETRO-Mapping during sinus rhythm, atrial tachycardia, and atrial fibrillation, and validated against detailed manual analysis of the same wavefronts with conventional isochronal mapping. RETRO-Mapping was found to have comparable accuracy to isochronal mapping. RETRO-Mapping was then used to investigate atrial activation patterns during persistent AF. Atrial activation patterns demonstrated evidence of spatiotemporal stability over long time periods. Orbital plots created at different time points in the same location remained unchanged. Together with this important discovery, both fractionation and bipolar voltage were also demonstrated to express stability over time. Spatiotemporal stability during persistent AF enables sequential mapping as an acceptable technique. This property also allowed the development of a method for displaying sequentially mapped locations on a single map – RETRO-Choropleth Map. These findings go against the multiple wavelet hypothesis with random activation. Having gained insights in to these stable activation patterns, extensive analysis was undertaken to identify the presence of focal activation. Focal activations were identified during persistent AF. RETRO-Mapping was used to show that adjacent activation patterns were not related to focal activations. Lastly, the effect of pulmonary vein isolation (PVI) was studied by mapping atrial activation patterns before and after PVI. RETRO-Mapping showed that PVI leads to increased organisation of AF in most patients, supporting a mechanistic role of the pulmonary veins in persistent AF. In conclusion, a new technique has been developed and validated for automated activation mapping of persistent AF. These techniques could be used to guide additional ablation strategies beyond PVI for patients with persistent AF.Open Acces

    Studies on the dynamics of chaotic multi-wavelet reentrant propagation using a hybrid cellular automaton model of excitable tissue

    Full text link
    There is a compelling body of evidence implicating continuous propagation (reentry) sustained by multiple meandering wavelets in the pathology of advanced human atrial fibrillation (AF). This forms the basis for many current therapies such as the Cox MAZE procedure and its derivatives, which aim to create non-conducting lesions in order to "transect" these circuits before they form. Nevertheless, our ability to successfully treat persistent and permanent AF using catheter ablation remains inadequate due to current limitations of clinical mapping technology as well as an incomplete understanding of how to place lesions in order to maximize circuit transection and, more importantly, minimize AF burden. Here, we used a hybrid cellular automaton model to study the dynamics of chaotic, multi-wavelet reentry (MWR) in excitable tissue. First, we used reentry as an exemplar to investigate a hysteretic disease mechanism in a multistable nonlinear system. We found that certain interactions with the environment can cause persistent changes to system behavior without altering its structure or properties, thus leading to a disconnect between clinical symptoms and the underlying state of disease. Second, we developed a novel analytical method to characterize the spatiotemporal dynamics of MWR. We identified a heterogeneous spatial distribution of reentrant pathways that correlated with the spatial distribution of cell activation frequencies. Third, we investigated the impact of topological and geometrical substrate alterations on the dynamics of MWR. We demonstrated a multi-phasic relationship between obstacle size and the fate of individual episodes. Notably, for a narrow range of sizes, obstacles appeared to play an active role in rapidly converting MWR to stable structural reentry. Our studies indicate that reentrant-pathway distributions are non-uniform in heterogeneous media (such as the atrial myocardium) and suggest a clinically measurable correlate for identifying regions of high circuit density, supporting the feasibility of patient-specific targeted ablation. Moreover, we have elucidated the key mechanisms of interaction between focal obstacles and MWR, which has implications for the use of spot ablation to treat AF as some recent studies have suggested

    Mapping the Substrate of Atrial Fibrillation: Tools and Techniques

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia that affects an estimated 33.5 million people worldwide. Despite its prevalence and economic burden, treatments remain relatively ineffective. Interventional treatments using catheter ablation have shown more success in cure rates than pharmacologic methods for AF. However, success rates diminish drastically in patients with more advanced forms of the disease. The focus of this research is to develop a mapping strategy to improve the success of ablation. To achieve this goal, I used a computational model of excitation in order to simulate atrial fibrillation and evaluate mapping strategies that could guide ablation. I first propose a substrate guided mapping strategy to allow patient-specific treatment rather than a one size fits all approach. Ablation guided by this method reduced AF episode durations compared to baseline durations and an equal amount of random ablation in computational simulations. Because the accuracy of electrogram mapping is dependent upon catheter-tissue contact, I then provide a method to identify the distance between the electrode recording sites and the tissue surface using only the electrogram signal. The algorithm was validated both in silico and in vivo. Finally, I develop a classification algorithm for the identification of activation patterns using simultaneous, multi-site electrode recordings to aid in the development of an appropriate ablation strategy during AF. These findings provide a framework for future mapping and ablation studies in humans and assist in the development of individualized ablation strategies for patients with higher disease burden

    Practical Considerations for the Application of Nonlinear Indices Characterizing the Atrial Substrate in Atrial Fibrillation

    Full text link
    [EN] Atrial fibrillation (AF) is the most common cardiac arrhythmia, and in response to increasing clinical demand, a variety of signals and indices have been utilized for its analysis, which include complex fractionated atrial electrograms (CFAEs). New methodologies have been developed to characterize the atrial substrate, along with straightforward classification models to discriminate between paroxysmal and persistent AF (ParAF vs. PerAF). Yet, most previous works have missed the mark for the assessment of CFAE signal quality, as well as for studying their stability over time and between different recording locations. As a consequence, an atrial substrate assessment may be unreliable or inaccurate. The objectives of this work are, on the one hand, to make use of a reduced set of nonlinear indices that have been applied to CFAEs recorded from ParAF and PerAF patients to assess intra-recording and intra-patient stability and, on the other hand, to generate a simple classification model to discriminate between them. The dominant frequency (DF), AF cycle length, sample entropy (SE), and determinism (DET) of the Recurrence Quantification Analysis are the analyzed indices, along with the coefficient of variation (CV) which is utilized to indicate the corresponding alterations. The analysis of the intra-recording stability revealed that discarding noisy or artifacted CFAE segments provoked a significant variation in the CV(%) in any segment length for the DET and SE, with deeper decreases for longer segments. The intra-patient stability provided large variations in the CV(%) for the DET and even larger for the SE at any segment length. To discern ParAF versus PerAF, correlation matrix filters and Random Forests were employed, respectively, to remove redundant information and to rank the variables by relevance, while coarse tree models were built, optimally combining high-ranked indices, and tested with leave-one-out cross-validation. The best classification performance combined the SE and DF, with an accuracy (Acc) of 88.3%, to discriminate ParAF versus PerAF, while the highest single Acc was provided by the DET, reaching 82.2%. This work has demonstrated that due to the high variability of CFAEs data averaging from one recording place or among different recording places, as is traditionally made, it may lead to an unfair oversimplification of the CFAE-based atrial substrate characterization. Furthermore, a careful selection of reduced sets of features input to simple classification models is helpful to accurately discern the CFAEs of ParAF versus PerAF.This research has received partial financial support from public national grants DPI2017-83952-C3, PID2021-00X128525-IV0, and PID2021-123804OB-I00 of the Spanish Government with DOI 10.13039/501100011033 jointly with the European Regional Development Fund (EU), and regional grants SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha and AICO/2021/286 from Generalitat Valenciana.Finotti, E.; Quesada, A.; Ciaccio, EJ.; Garan, H.; Hornero, F.; Alcaraz, R.; Rieta, JJ. (2022). Practical Considerations for the Application of Nonlinear Indices Characterizing the Atrial Substrate in Atrial Fibrillation. Entropy. 24(24):1-17. https://doi.org/10.3390/e24091261117242

    Development of High Resolution Tools for Investigating Cardiac Arrhythmia Dynamics

    Get PDF
    Every year 300,000 Americans die due to sudden cardiac death. There are many pathologies, acquired and genetic, that can lead to sudden cardiac death. Regardless of the underlying pathology, death is frequently the result of ventricular tachycardia and/or fibrillation (VT/VF). Despite decades of research, the mechanisms of ventricular arrhythmia initiation and maintenance are still incompletely understood. A contributing factor to this lack of understanding is the limitations of the investigative tools used to study VT/VF. Arrhythmias are organ level phenomena that are governed by cellular interactions and as such, near cellular levels of resolution are needed to tease out their intricacies. They are also behaviors that are not limited by region, but dynamically affect the entirety of the heart. For these reasons, high-resolution methodologies capable of measuring electrophysiology of the whole entirety of the ventricles will play an important role in gaining a complete understanding of the principles that govern ventricular arrhythmia dynamics. They will also be essential in the development of novel therapies for arrhythmia management. In this dissertation, I first present the validation and characterization of a novel capacitive electrode design that overcomes the key limitations faced by modern implantable cardiac devices. I then outline the construction, methodologies, and open-source tools of an improved optical panoramic mapping system for small mammalian cardiac electrophysiology studies. I conclude with a small mammal study of the relationship between action potential duration restitution dynamics and the mechanisms of maintenance in ventricular arrhythmias

    Revisiting left atrial volumetry by magnetic resonance imaging : the role of atrial shape and 3D angle between left ventricular and left atrial axis

    Get PDF
    Background Accurate measurement of left atrial (LA) volumes is needed in cardiac diagnostics and the follow up of heart and valvular diseases. Geometrical assumptions with 2D methods for LA volume estimation contribute to volume misestimation. In this study, we test agreement of 3D and 2D methods of LA volume detection and explore contribution of 3D LA axis orientation and LA shape in introducing error in 2D methods by cardiovascular magnetic resonance imaging. Methods 30 patients with prior first-ever ischemic stroke and no known heart disease, and 30 healthy controls were enrolled (age 18-49) in a substudy of a prospective case-control study. All study subjects underwent cardiac magnetic resonance imaging and were pooled for this methodological study. LA volumes were calculated by biplane area-length method from both conventional long axis (LAV(AL-LV)) and LA long axis-oriented images (LAV(AL-LA)) and were compared to 3D segmented LA volume (LAV(SAX)) to assess accuracy of volume detection. 3D orientation of LA long axis to left ventricular (LV) long axis and to four-chamber plane were determined, and LA 3D sphericity indices were calculated to assess sources of error in LA volume calculation. Shapiro-Wilk test, Bland-Altman analysis, intraclass and Pearson correlation, and Spearman's rho were used for statistical analysis. Results Biases were - 9.9 mL (- 12.5 to - 7.2) for LAV(AL-LV) and 13.4 (10.0-16.9) for LAV(AL-LA) [mean difference to LAV(SAX) (95% confidence interval)]. End-diastolic LA long axis 3D deviation angle to LV long axis was 28.3 +/- 6.2 degrees [mean +/- SD] and LA long axis 3D rotation angle to four-chamber plane 20.5 +/- 18.0 degrees. 3D orientation of LA axis or 3D sphericity were not correlated to error in LA volume calculation. Conclusions Calculated LA volume accuracy did not improve by using LA long axis-oriented images for volume calculation in comparison to conventional method. We present novel data on LA axis orientation and a novel metric of LA sphericity and conclude that these measures cannot be utilized to assess error in LA volume calculation.Peer reviewe

    Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology

    Get PDF
    We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter–electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future

    Dynamic regulation of subcellular calcium handling in the atria:modifying effects of stretch and adrenergic stimulation

    Get PDF
    Atrial fibrillation is the fast and irregular heart rate that occurs when the upper chambers of the heart experience chaotic electrical activation. Three main factors contribute to the development of this disease: triggers, substrate and modifying factors. An arrhythmia is thus like a fire that needs a spark (Trigger) to ignite a pile of wood (Substrate) and depends on the humidity or accelerants (modifying factors) to burn faster or slower. This body of work takes a closer look at such modifying factors. The major finding of this thesis is that stretching atrial heart muscle cells releases Calcium ions from storage spaces within each cell. If these Calcium release events get frequent enough they can act as triggers for the arrhythmia. The thickness of the atrial muscle is heterogeneous, thus filling the atrium with blood distends thinner parts stronger than ticker portions. The varying degree of stretch might stimulate Calcium release predominantly from myocytes in thinner regions of the atria. This heterogeneity in spontaneous Calcium release can modify also the substrate. A comparable effect of stretch was previously described in the heart’s main chambers. However, it appears that the in the atria it depends on another mechanism, which could serve as a treatment target that mainly acts on the atria without negatively affecting the ventricle
    • …
    corecore