30 research outputs found

    High-Capacity Short-Range Optical Communication Links

    Get PDF

    Improved Nonlinear Model Implementation for VCSEL Behavioral Modeling in Radio-Over-Fiber links

    Get PDF
    Open Access provided by `Alma Mater Studiorum - Università di Bologna' within the CRUI CARE AgreementInternational audienc

    Performance of low-cost radio-over-fibre systems

    Get PDF
    The research presented in this thesis has focused on the use of radio-over-fibre (RoF) technology for improving the quality of mobile/wireless coverage within buildings. The primary aim was to minimise overall system costs by employing commercially available components. For this purpose, a distributed antenna system using low-cost vertical-cavity surface-emitting lasers (VCSELs) operating at 850 nm and multimode fibre (OM1/OM2) has been designed and implemented. A detailed link budget analysis has been performed which allows for the prediction of maximum achievable ranges for the transmission of different wireless systems over the RoF link, while taking into account practical restrictions that are important for bidirectional link operation (e.g. crosstalk and noise emissions). The analysis indicates that when optimised component parameter values are utilised, reasonable cell sizes may be achieved for systems such as GSM, UMTS and WLAN. The link budget predictions were verified for the transmission of ‘real’ WLAN signals over the designed RoF link and complete coverage of a standard office room was demonstrated. The majority of previous research into low-cost RoF links has primarily involved characterisation of the optical path. In this investigation, signal strength and throughput measurements were conducted for the combined optical and wireless paths in order to verify the operation of the complete fibre-fed WLAN system. Throughput values close to 5 Mbps for IEEE 802.11b and 20 Mbps for IEEE 802.1 lg were recorded. Additionally, the transmission of different combinations of emulated mobile/wireless systems in a dual-band configuration over another radio-over-fibre link (also employing 850 nm VCSELs and MMF) has been successfully demonstrated. Experimental investigations have been carried out for the first time to analyse the performance of WLAN-over-fibre networks using different MAC mechanisms such as fragmentation and the use of RTS/CTS in the presence of hidden nodes. Finally, scenarios involving multiple clients accessing a single remote antenna unit and multiple remote antenna units being fed by a single access point have been demonstrated

    Broadband Receiver Electronic Circuits for Fiber-Optical Communication Systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improve their capacity. As the copper based network infrastructure is being replaced by fiber-optical interconnects, new industrial standards for higher datarates are required. Several research and industrial organizations are aiming towards 400 Gb Ethernet and beyond, which brings new challenges to the field of high-speed broadband electronic circuit design. Replacing OOK with higher M-ary modulation formats and using higher datarates increases network capacity but at the cost of power. With datacenters rapidly becoming significant energy consumers on the global scale, the energy efficiency of the optical interconnect transceivers takes a primary role in the development of novel systems. There are several additional challenges unique in the design of a broadband shortreach fiber-optical receiver system. The sensitivity of the receiver depends on the noise performance of the PD and the electronics. The overall system noise must be optimized for the specific application, modulation scheme, PD and VCSEL characteristics. The topology of the transimpedance amplifier affects the noise and frequency response of the PD, so the system must be optimized as a whole. Most state-of-the-art receivers are built on high-end semiconductor SiGe and InP technologies. However, there are still several design decisions to be made in order to get low noise, high energy efficiency and adequate bandwidth. In order to overcome the frequency limitations of the optoelectronic components, bandwidth enhancement and channel equalization techniques are used. In this work several different blocks of a receiver system are designed and characterized. A broadband, 50 GHz bandwidth CB-based TIA and a tunable gain equalizer are designed in a 130 nm SiGe BiCMOS process. An ultra-broadband traveling wave amplifier is presented, based on a 250 nm InP DHBT technology demonstrating a 207 GHz bandwidth. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback, based on a 130 nm InP DHBT technology are designed and compared

    Wideband integrated circuits for optical communication systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improvetheir capacity. Several research and industrial organizations are aiming towardsTbps Ethernet and beyond, which brings new challenges to the field of high-speedbroadband electronic circuit design. With datacenters rapidly becoming significantenergy consumers on the global scale, the energy efficiency of the optical interconnecttransceivers takes a primary role in the development of novel systems. Furthermore,wideband optical links are finding application inside very high throughput satellite(V/HTS) payloads used in the ever-expanding cloud of telecommunication satellites,enabled by the maturity of the existing fiber based optical links and the hightechnology readiness level of radiation hardened integrated circuit processes. Thereare several additional challenges unique in the design of a wideband optical system.The overall system noise must be optimized for the specific application, modulationscheme, PD and laser characteristics. Most state-of-the-art wideband circuits are builton high-end semiconductor SiGe and InP technologies. However, each technologydemands specific design decisions to be made in order to get low noise, high energyefficiency and adequate bandwidth. In order to overcome the frequency limitationsof the optoelectronic components, bandwidth enhancement and channel equalizationtechniques are used. In this work various blocks of optical communication systems aredesigned attempting to tackle some of the aforementioned challenges. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback,are designed and measured, utilizing a state-of-the-art 130 nm InP DHBT technology.A modular equalizer block built in 130 nm SiGe HBT technology is presented. Threeultra-wideband traveling wave amplifiers, a 4-cell, a single cell and a matrix single-stage, are designed in a 250 nm InP DHBT process to test the limits of distributedamplification. A differential VCSEL driver circuit is designed and integrated in a4x 28 Gbps transceiver system for intra-satellite optical communications based in arad-hard 130nm SiGe process

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Mode group diversity multiplexing in multimode fiber transmission systems

    Get PDF
    corecore