22 research outputs found

    Efficient multi-point local decoding of Reed-Muller codes via interleaved codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ {q), where q is the code alphabet size (in fact, d can be as big as q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing), we are able to locally recover arbitrarily large number k of coordinates of a Reed-Muller code simultaneously with error probability exp (-Ω (k)) at the cost of querying merely O(q2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows (perhaps surprisingly) that accessing k locations is in fact cheaper than repeating the procedure for accessing a single location for k times. Precisely speaking, to get the same success probability by repeating the local decoding algorithm of a single coordinate, one has to query Ω (qk2) coordinates. Thus, the query complexity of our local decoding is smaller for k=Ω (q). If we impose the same query complexity constraint on both algorithm, our local decoding algorithm yields smaller error probability when k=Ω (qq). In addition, our local decoding is efficient, i.e., the decoding complexity is Poly(k,q). Construction of an interleaved codex is based on concatenation of a codex with a multiplication friendly pair, while the main tool to realize codex is based on algebraic function fields (or more precisely, algebraic geometry codes)

    Outlaw distributions and locally decodable codes

    Get PDF
    Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in L∞ norm) with a small number of samples. We coin the term “outlaw distributions” for such distributions since they “defy” the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently “smooth” functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters

    Quantum stabilizer codes and beyond

    Get PDF
    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.Comment: Ph.D. Dissertation, Texas A&M University, 200
    corecore