65,588 research outputs found

    New Iterative Algorithms for Weighted Matching

    Get PDF
    Matching is an important combinatorial problem with a number ofpractical applications. Even though there exist polynomial time solutionsto most matching problems, there are settings where these are too slow.This has led to the development of several fast approximation algorithmsthat in practice compute matchings very close to the optimal.The current paper introduces a new deterministic approximationalgorithm named G 3 , for weighted matching. The algorithm is based ontwo main ideas, the first is to compute heavy subgraphs of the originalgraph on which we can compute optimal matchings. The second idea isto repeatedly merge these matchings into new matchings of even higherweight than the original ones. Both of these steps are achieved usingdynamic programming in linear or close to linear time.We compare G 3 with the randomized algorithm GPA+ROMA whichis the best known algorithm for this problem. Experiments on alarge collection of graphs show that G 3 is substantially faster thanGPA+ROMA while computing matchings of comparable weight

    Mixing Color Coding-Related Techniques

    Full text link
    Narrow sieves, representative sets and divide-and-color are three breakthrough color coding-related techniques, which led to the design of extremely fast parameterized algorithms. We present a novel family of strategies for applying mixtures of them. This includes: (a) a mix of representative sets and narrow sieves; (b) a faster computation of representative sets under certain separateness conditions, mixed with divide-and-color and a new technique, "balanced cutting"; (c) two mixtures of representative sets, iterative compression and a new technique, "unbalanced cutting". We demonstrate our strategies by obtaining, among other results, significantly faster algorithms for kk-Internal Out-Branching and Weighted 3-Set kk-Packing, and a framework for speeding-up the previous best deterministic algorithms for kk-Path, kk-Tree, rr-Dimensional kk-Matching, Graph Motif and Partial Cover

    On large-scale diagonalization techniques for the Anderson model of localization

    Get PDF
    We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques in the implicitly restarted Lanczos method and in the Jacobiā€“Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit peāˆˆQ+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wjāˆˆZ+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    Maximum Weight Matching via Max-Product Belief Propagation

    Full text link
    Max-product "belief propagation" is an iterative, local, message-passing algorithm for finding the maximum a posteriori (MAP) assignment of a discrete probability distribution specified by a graphical model. Despite the spectacular success of the algorithm in many application areas such as iterative decoding, computer vision and combinatorial optimization which involve graphs with many cycles, theoretical results about both correctness and convergence of the algorithm are known in few cases (Weiss-Freeman Wainwright, Yeddidia-Weiss-Freeman, Richardson-Urbanke}. In this paper we consider the problem of finding the Maximum Weight Matching (MWM) in a weighted complete bipartite graph. We define a probability distribution on the bipartite graph whose MAP assignment corresponds to the MWM. We use the max-product algorithm for finding the MAP of this distribution or equivalently, the MWM on the bipartite graph. Even though the underlying bipartite graph has many short cycles, we find that surprisingly, the max-product algorithm always converges to the correct MAP assignment as long as the MAP assignment is unique. We provide a bound on the number of iterations required by the algorithm and evaluate the computational cost of the algorithm. We find that for a graph of size nn, the computational cost of the algorithm scales as O(n3)O(n^3), which is the same as the computational cost of the best known algorithm. Finally, we establish the precise relation between the max-product algorithm and the celebrated {\em auction} algorithm proposed by Bertsekas. This suggests possible connections between dual algorithm and max-product algorithm for discrete optimization problems.Comment: In the proceedings of the 2005 IEEE International Symposium on Information Theor
    • ā€¦
    corecore