235 research outputs found

    Multi-agent control and operation of electric power distribution systems

    Get PDF
    This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system analysis package. Second, operation of these generators in a distribution system is addressed and load following schemes are designed. The penetration of distributed generators (DGs) into the power distribution system stability becomes an issue and so the control of those DGs becomes necessary. A decentralized control structure based on conventional controllers is designed for distributed generators using a new developed optimization technique called Guided Particle Swarm Optimization. However, the limitations of the conventional controllers do not satisfy the stability requirement of a power distribution system that has a high DG penetration level, which imposes the necessity of developing a new control structure able to overcome the limitations imposed by the fixed structure conventional controllers and limit the penetration of DGs in the overall transient stability of the distribution system. Third, a novel multi-agent based control architecture is proposed for transient stability enhancement for distribution systems with microturbines. The proposed control architecture is hierarchical with one supervisory global control agent and a distributed number of local control agents in the lower layer. Specifically, a central control center supervises and optimizes the overall process, while each microturbine is equipped with its own local control agent.;The control of naval shipboard electric power system is another application of distributed control with multi-agent based structure. In this proposal, the focus is to introduce the concept of multi-agent based control architecture to improve the stability of the shipboard power system during faulty conditions. The effectiveness of the proposed methods is illustrated using a 37-bus IEEE benchmark system and an all-electric naval ship

    A Novel Approach to PID Controller Design for Improvement of Transient Stability and Voltage Regulation of Nonlinear Power System

    Get PDF
    In this paper, a novel design method for determining the optimal PID controller parameters for non-linear power system using the particle swarm optimization (PSO) algorithm is presented. The direct feedback linearization (DFL) technique is used to linearize the nonlinear system for computing the PID (DFL-PID) controller parameters. By taking an example of single machine infinite bus (SMIB) power system it has been shown that PSO based PID controller stabilizes the system and restores the pre-fault system performance after fault is cleared and line is restored. The performance of this controlled system is compared with the performance of DFL-state feedback controlled power system. It has been shown that the performance of DFL-PID controlled system is superior compared to DFL-state feedback controlled system. For simulation MATLAB 7 software is used.

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Optimal controllers design for voltage control in Off-grid hybrid power system

    Get PDF
    Generally, for remote places extension of grid is uneconomical and difficult. Off-grid hybrid power systems (OGHPS) has  renewable energy sources integrated with conventional sources. OGHPS is very significant as it is the only source of electric supply for remote areas. OGHPS under study  has Induction generator (IG) for wind power generation, Photo-Voltaic source with inverter, Synchronous generator (SG) for Diesel Engine (DE) and load. Over-rated PV-inverter has capacity to supply reactive power.  SG of  DE  has Automatic voltage regulator for excitation control to regulate terminal voltage. Load and IG demands reactive power, causes reactive power imbalance hence voltage fluctuations in OGHPS. To manage reactive power for voltage control, two control structures with Proportional–Integral controller(PI), to control  inverter reactive power and  SG excitation by automatic voltage regulator are incorporated.  Improper tuning of controllers lead  to oscillatory and sluggish response. Hence in this test system both controllers need to be tune optimally. This paper proposes novel intelligent computing algorithm , Enhanced Bacterial forging algorithm (EBFA) for optimal reactive power controller for voltage control in OGHPS. Small signal model of OGHPS with proposed controller is  tested for different disturbances. simulation results  are compared  with conventional  method , proved the effectiveness of EBFA

    Improved Step Response of Power System Stabilizer using Fuzzy Logic Controller

    Get PDF
    As every power system is constantly being subjected to disturbances, we should see that these disturbances do not make the system unstable. Therefor additional signals derived from speed deviation, excitation deviation and accelerating power are injected into voltage regulators. The device to provide these signals is referred as power system stabilizer. The use of power system stabilizers has become very common in operation of large electric power systems. The conventional PSS which uses lead-lag compensation, where gain settings designed for specific operating conditions, is giving poor performance under different loading conditions. Therefore, it is very difficult to design a stabilizer that could present good performance in all operating points of electric power systems. In an attempt to cover a wide range of operating conditions, Fuzzy logic control has been suggested as a possible solution to overcome this problem. In this paper, a systematic approach to fuzzy logic control design is proposed. The study of fuzzy logic power system stabilizer for stability enhancement of a single machine infinite bus system is presented. In order to accomplish the stability enhancement, speed deviation and acceleration of the rotor synchronous generator are taken as the inputs to the fuzzy logic controller. These variables take significant effects on damping the generator shaft mechanical oscillations. The stabilizing signals were computed using the fuzzy membership function depending on these variables. The performance of the system with fuzzy logic based power system stabilizer is compared with the system having conventional power system stabilizer and system without power system stabilize

    DHP-Based Wide-Area Coordinating Control of a Power System with a Large Wind Farm and Multiple FACTS Devices

    Get PDF
    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area monitor and wide-area coordinating neurocontroller (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm, and multiple flexible ac transmission system (FACTS) devices. The wide-area monitor is a radial basis function neural network (RBFNN) that identifies the input-output dynamics of the nonlinear power system. Its parameters are optimized through a particle swarm optimization (PSO) based method. The WACNC is designed by using the dual heuristic programming (DHP) method and RBFNNs. It operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance, and therefore helps improve system-wide dynamic and transient performance

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Optimal coordinated design of PSS and UPFC-POD using DEO algorithm to enhance damping performance

    Get PDF
    Low-frequency oscillations (LFO) are an inevitable problem of power systems and they have a great effect on the capability of transfer and power system stability. The power system stabilizers (PSSs) as well as flexible AC transmission system (FACTS) devices can help to damp LFO. The target of this study is to tackle the problem of a dual-coordinated design between PSS and unified power flow controller (UPFC) implementing the task of power oscillation damping (POD) controller in a single machine infinite bus (SMIB) system. So, dolphin echolocation optimization (DEO) technique is utilized as an optimization tool to search for optimal parameter tunings based on objective function for enhancing the dynamic stability performance for a SMIB. DEO an algorithm has a few parameters, simple rules, provides the optimum result and is applicable to a wide range of problems like other meta-heuristic algorithms. Use DEO gave the best results in damping LFO compared to particle swarm optimization (PSO) algorithm. From the comparison results between PSO and DEO, it was shown that DEO provides faster settling time, less overshoot, higher damping oscillations and greatly improves system stability. Also, the comparison results prove that the multiple stabilizers show supremacy over independent controllers in mitigationg LFO of a SMIB
    • …
    corecore