6,308 research outputs found

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Towards a European Smart Energy System - ICT innovation goals and considerations

    Get PDF
    The EU-driven integration of European energy systems and the development of a Smart Energy System involves many key players. The success of a European Smart Energy Systems relies heavily on the development of well-designed ICT solutions in all related sectors. Because such ICT solutions should be well aligned, ICT innovation goals are needed that have the support of key European players and consortia. To this end, Round Tables have been organised by EIT ICT Labs from 2013 onwards, in which key players in the European energy sector establish a common vision on and align forces in the development of a European Smart Energy System. We reflect and build upon these discussions to formulate a joint input to the European goals on ICT and Smart Energy Systems, and for the innovation activities of EIT ICT Labs

    What Is Energy Internet? Concepts, Technologies, and Future Directions

    Get PDF

    Toward a Smart EU Energy Policy: Rationale and 22 Recommendations

    Get PDF
    We are in desperate need of an EU Energy Policy. The facts are that, yes, there is indeed an EU Energy Policy. It is a policy based on a vision, a vision with three components. The policy is aiming for “markets, competition and efficiency”, it is equally focussing on “a sustainable energy economy”, and thirdly, it wants to “secure the EU’s energy supply”. Three objectives, three separate action lines. Balancing the three objectives in an integrated approach is challenging and difficult. To what extent is the market approach consistent with the other two policy packages? What impact does a climate package with tradable emission rights and non-tradable targets for green energy have on the market designs for gas and electricity? Are the necessary investments in new pipes and wires for securing our energy supplies sufficiently coming under the prevailing regulatory framework? Or, to put it differently; are we smart enough in the way in which we are making implementing steps in order to meet our stated objectives? Our paper ends with a proposed new vision and a set of 22 recommendations to the new European Commission.energy policy; climate change; security of energy supply; EU internal marke
    • 

    corecore